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The development of intelligent vehicle will provide the Chinese automotive industry with a strategic opportunity for transformation
and upgrading. Vehicular intelligence provides new solutions for energy conservation and emissions mitigation. However, the
process of vehicular intelligence is progressive. The saving of energy consumption depends on the high smart car market
penetration rate. But one thing that can be confirmed is that intelligent vehicles are equipped with advanced sensors, controllers,
and actuators, in combination with connecting communication technologies compared with conventional vehicles, for which
the energy consumption of the vehicle will definitely increase. In this study, vehicle fuel consumption cost at different levels of
intelligence is calculated, considering the energy consumption of hardware used for automation and connecting functions, the
energy consumption cost generated by the quality of the hardware, and the wind resistance. The results reveal that the energy
consumption per 100 kilometers of an intelligent vehicle ranges from 0.78L to 1.86L, more than traditional vehicle. The energy
consumption cost of automation functions ismuch higher than that of the connecting functions. Computing platformperformance,
connection strength, and radar performance are the three main factors that affect energy consumption cost. Based on the analysis,
the high energy consumption cost of vehicular intelligence has a profound impact on choosing power platform.

1. Introduction

As a major industry for energy consumption and greenhouse
gas emissions, the automotive industry faces severe emis-
sion reduction challenges, and the process of low energy
consumption and low carbonization is imminent [1]. The
automotive industry is currently in a special historical
period. Energy consumption, environmental pollution, traffic
congestion, traffic accidents, and other issues have brought
enormous challenges and pressures to the industry, and
this pressure is particularly prominent in China [2]. With
economic development, travel demands and logistic demands
will continue to rise in China. To solve the associated
problems, policies related to electric vehicle (EV) promotion
and fuel economy regulations are being adopted by the state
government [3]. According to the “Made in China 2025”
strategy, intelligent vehicles, energy-saving vehicles, and new
energy vehicles are the three major development priorities
in the automotive area. The intelligent vehicle represents the

commanding heights of prospective automotive technology,
development trend, and industrial upgrading [4]. The auto-
mobile industry is characterized by large scale, strong driving
effect, many fields involved, and a wide range of influences
[5]. Therefore, the all-round changes in the automotive
industry have given birth to historical opportunities [6].

The development of intelligent vehicles can significantly
reduce energy consumption and greenhouse gas emissions
was confirmed by many studies. Embedding algorithms for
speed advice and economic driving advice in vehicle control
systems can improve vehicle ride comfort and energy con-
sumption [7]. Servin and Tielert discussed the effects of intel-
ligent speed control and vehicle-traffic signal interaction on
fuel consumption and emissions, respectively [8, 9]. Adding
vehicle fuel economy optimization algorithm to intelligent
traffic light control can improve traffic efficiency and reduce
vehicle fuel consumption [10]. From the perspective of road-
coordinated control technology, Lee evaluated traffic effi-
ciency and safety improvements after developing self-driving
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car [11]. Morris evaluated the impact of vehicle intelligence
on real-time traffic efficiency. Based on this, the indirect
impact mechanism of fuel consumption optimization due
to traffic efficiency improvement was discussed [12]. The
green wave band coordinated control intelligent technology
can reduce the PM2.5 index in the environment along the
road [13]. Yunpeng Wang verified the change of vehicle
exhaust emissions under different standard driving speeds
through the means of real road test [14]. Vehicle-to-vehicle
communications report published by Harding J provided
an overview of the development status of the V2X, from
the perspective of technical application, facility construction,
public acceptance, and regulatory rationality. And the cost-
benefit assessment of the impact of intelligent vehicles on
fuel economy and traffic accidents was given in the report
[15]. Maccubbin pointed out that intelligent safety assistance
technology not only helps reduce accident rates, but also
indirectly improves fuel consumption and traffic efficiency
and reduces production costs and travel satisfaction [16].

In general, the existing research mainly focuses on the
qualitative analysis of themacro intelligent traffic perspective,
and the quantitative evaluation based on the individual
vehicle intelligence is still rare. On the other hand, most
of the evaluation dimensions of existing research are the
positive benefits brought by the high intelligent vehicle
market penetration rate, which is a synergistic benefit that
relies heavily on high market penetration. But the number of
intelligent vehicles is slowly increasing. In 2025, the market
penetration rate of intelligent vehicles in new cars is 50%
[17]. The proportion of intelligent vehicle in car ownership
is relatively small, and group benefits are difficult to come by.

Compared with the traditional vehicle, the intelligent
vehicle is equipped with various types of sensing hardware
and decision hardware [18]. One thing that can be sure is
that the intelligent vehicle will have a significant increase in
driving energy consumption.The evaluation of such negative
effects is still rare, and the relevant gaps need to be filled.

According to the requirements of the Medium and Long-
Term Development Plan of the Automobile Industry, the
average fuel consumption of new vehicles in 2020 needs to
be reduced to 5.0 liters/100 kilometers, and 4.0 liters/100
kilometers in 2025[17]. Research on the promotion of new
energy vehicles, especially electric vehicles, shows that the
most effective way to increase themarket share of new energy
vehicles is to alleviate the “mileage anxiety” in the use of
consumers [19]. The additional energy consumption gener-
ated by the intelligentization of automobiles will increase the
difficulty of compliance with corporate regulations, shorten
the cruising range of electric vehicles, and increase the cost of
consumer use.Therefore, quantitative research on the energy
consumption cost of Vehicular intelligentization and its key
influencing factors will provide important support for the
sustainable development of smart cars.

With the aim of filling such a gap, the fuel consumption
cost per 100 kilometers of hardware mounted on the intelli-
gent vehicle is estimated. Considering the possible technical
routes, the energy consumption cost of the combination of
different automation levels and connecting levels is evaluated.
Moreover, multiple factors potentially influence the fuel

consumption cost. Therefore, the key hardware that affects
energy consumption is identified and a single factor analysis
is also conducted in this study.

This paper is organized as follows. The next section
describes the research method and data. Following that, the
result of fuel consumption cost per 100 kilometers under
different intelligent levels was given. The subsequent section
proposed the policy implications for vehicle power platform.
The final section provided the conclusive remarks.

2. Materials and Methods

This section describes the method and data in the study. In
Section 2.1, the definition of vehicle Intelligence in the study
is explained. Section 2.2 discusses the method in calculating
energy consumption cost of vehicle intelligence. Following
that, a brief description of data used are is given.

2.1. The Definition of the Intelligent Vehicle. Intelligentization
is not the same as automation and connecting, but the result
of the integration of automation and connecting. According
to ‘the Road Map of Energy Conservation and New Energy
Vehicle Technology’, the connecting capability is divided into
three levels based on the amount of information transmitted
over the network. L1 is connected auxiliary information inter-
action, L2 connected collaborative sensing, and L3 connected
collaborative decision and control.The Society of Automotive
Engineers (SAE) classifies the automated driving into six
levels including No Driving Automation, Driver Assistance
(DA), Partial Driving Automation (PA), Conditional Driving
Automation (CA), High Driving Automation (HA), and Full
DrivingAutomation (FA) [18]. Only basic autopilot capability
and basic connecting capabilities are available, so DA and PA
are not discussed in this article.

In this paper, the intelligent level is defined by the
combination of the automation level and the connecting level,
which is shown in Figure 1. A conditional driving auto-
matic car with connected auxiliary information interaction is
defined as a primary intelligent car. A high driving automatic
car with connected collaborative sensing is defined as an
intermediate intelligent car. A full driving automatic car with
connected collaborative decision and control is defined as an
advanced intelligent car.

2.2. Energy Consumption Cost

2.2.1. Source of Energy Consumption Cost. In order to identify
the source of energy costs, it is necessary to define the
definition of energy costs. The energy consumption cost
refers to the increased energy consumption of intelligent
vehicles traveling 100 km under NEDC conditions. NEDC is
the driving condition in the fuel consumption measurement
standard adopted by China’s current light-duty vehicles. The
11 km full-length driving cycle takes 1180s. The average speed
is 33.68km/h [20]. Therefore, this paper assumes that it takes
2.97 hours for the test intelligent vehicle to travel 100 km, and
it takes 0.33 hour to find the parking space.
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Figure 1: The definition of the intelligent vehicle.
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Figure 2: The energy consumption cost evaluation model.

The three major types of energy consumption costs due
to assembly hardware are considered. The first part is the
operating energy consumption of automation and connecting
hardware. Different intelligent level vehicles are equipped
with different numbers of hardware.The energy consumption
of a single hardware also changes with the level of intelligence
and the intensity of work. The second part is the energy
consumption generated by the quality of the hardware. The
third part is the energy consumption caused by the increase in
the drag coefficient.The layout of the various types of sensors
increases the drag coefficient of the vehicle. The energy cost
calculation model of this study is shown in Figure 2.

2.2.2. Unit of Energy Consumption Cost. The energy con-
sumptionunit of electric vehicles is kwh/100km, andL/100km
of fuel vehicles. In order to make the energy consumption
cost more intuitive, the unit of energy consumption cost in
this paper is L/100km.However, the energy consumption unit
of the automation and connecting hardware is kwh/100km,
and the heat equivalent is used to convert the electric
energy consumption into fuel consumption. The calorific
value of gasoline is 4.6x10∧7J/Kg, and the density of gasoline
is 0.7Kg/L. The corresponding calorific value of 1kwh is

3.6x10∧6 joules. Assume that the average thermal efficiency
of a gasoline engine is 30%. Based on this assumption, 1L of
gasoline can be calculated to produce 2.68kwh of electricity
through the gasoline engine.

1L ×
0.7kg
L
× 4.6 × 107 × 30% ÷ 3.6 × 106 = 2.68𝑘𝑤ℎ (1)

2.2.3. Hardware Operation Energy Consumption. The hard-
ware operation energy consumption is divided into two parts:
the automatic function hardware operation energy consump-
tion and the connection function hardware operation energy
consumption.

The automatic function hardware operation energy con-
sumption under different intelligent levels is determined by
the number of hardware, rated power, intensity factor, time
factor, and driving time. The hardware related to automation
functions is a set of automation hardware and common
hardware such as laser radar and computing platform. The
intensity factor is used to indicate that the working strength
of each hardware is inconsistent during driving, and the same
for time factor.
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The automatic function hardware operation energy con-
sumption is calculated through Eq. (2).

𝐸𝐶𝐶𝐴𝐿 =
1

∑
𝑘=0

𝑛

∑
𝑖=1

(𝑛𝑢𝑚𝐴𝑖𝐿 × 𝑃𝐴𝑖𝐿 × 𝐼𝐹𝑎𝑐𝐴𝑖𝐿 × 𝑇𝐹𝑎𝑐𝐴𝑖𝐿)

× 𝑡𝑘 × 𝐶𝑜𝑛

(2)

where 𝐸𝐶𝐶𝐴𝐿 is the hardware operation energy consump-
tion cost of the automation function of the intelligent car
(L/100km); k indicates whether there is a driver in the
car; 𝑛𝑢𝑚𝐴𝑖𝐿 is the number of type i automation hardware
equipped with the intelligent cars; 𝑃𝐴𝑖𝐿 is the rated power
of the relevant hardware (kw); 𝐼𝐹𝑎𝑐𝐴𝑖𝐿 is the intensity factor
of the relevant hardware; 𝑇𝐹𝑎𝑐𝐴𝑖𝐿 is the time factor of the
relevant hardware; 𝑡𝑘 is the travel time of the vehicle in the
k state (h); 𝐶𝑜𝑛 is the Unit conversion factor.

The connection function hardware operation energy con-
sumption under different intelligent levels is also determined
by the number of hardware, rated power, intensity factor, time
factor, and driving time. The hardware associated with the
connection function is a series of connected hardware and
common hardware, such as V2X chip, MIMO RF module,
gateway and computing platform. The connection func-
tion hardware operation energy consumption is calculated
through Eq. (3).

𝐸𝐶𝐶𝐶𝐿 =
1

∑
𝑘=0

𝑚

∑
𝑖=1

(𝑛𝑢𝑚𝐶𝑖𝐿 × 𝑃𝐶𝑖𝐿 × 𝐼𝐹𝑎𝑐𝐶𝑖𝐿 × 𝑇𝐹𝑎𝑐𝐶𝑖𝐿)

× 𝑡𝑘 × 𝐶𝑜𝑛

(3)

where 𝐸𝐶𝐶𝐶𝐿 is the hardware operation energy consump-
tion cost of the connection function of the intelligent car
(L/100km); k indicates whether there is a driver in the car;
𝑛𝑢𝑚𝐶𝑖𝐿 is the number of connection hardware equipped with
the intelligent cars; 𝑃𝐶𝑖𝐿 is the rated power of the relevant
hardware (kw); 𝐼𝐹𝑎𝑐𝐶𝑖𝐿 is the intensity factor of the relevant
hardware;𝑇𝐹𝑎𝑐𝐶𝑖𝐿 is the time factor of the relevant hardware;
𝑡𝑘 is the travel time of the vehicle in the k state (h); 𝐶𝑜𝑛 is the
Unit conversion factor.

The computing platform is involved in equations (2) and
(3). Because the sensing hardware transmits the informa-
tion needed for automation to the computing platform for
processing and decision making, as well as the connecting
information. Therefore, it is necessary to reasonably distin-
guish the energy consumption of the automation and con-
necting functions in the computing platform. The principle
of differentiation is based on the amount of data.The amount
of LiDAR transmits to the computing platform is 1M/s.
The amount of connection information transferred to the
computing platform is related to the connecting capability.

2.2.4. Hardware Quality. Energy consumption generated by
the quality of the hardware is determined by travel speed,
rolling resistance coefficient, increased hardware quality, and
travel time. When driving on asphalt road at a speed of
33.68km/h, the rolling resistance coefficient is 0.0157 [21].

The energy consumption generated by the quality is
calculated through Eq. (4).

𝐸𝐶𝐶𝑄𝐿 =
𝑛

∑
𝑖=1

𝑚𝑖𝐿 × 9.8 × 𝑓 × V × 𝑡 × 𝐶𝑜𝑛 ÷ 1000 (4)

where 𝐸𝐶𝐶𝑄𝐿 is the energy consumption generated by the
hardware quality (L/100km);𝑚𝑖𝐿 is the hardware quality (kg);
𝑓 is the rolling resistance coefficient of asphalt pavement; V is
the travel speed(m/s); 𝑡 is the travel time (h).

2.2.5. Wind Resistance. Externally mounted hardware on the
roof rack will increase the drag coefficient. According to the
evaluation, the roof rack increases the energy consumption
of the vehicle by 0.05% [22].

The energy consumption caused by the increase in the
drag coefficient is calculated through Eq. (5).

𝐸𝐶𝐶𝐷𝐿 = 0.005

× (𝐸𝐶𝐶𝐴𝐿 + 𝐸𝐶𝐶𝐶𝐿 + 𝐸𝐶𝐶𝑄𝐿 + 𝐸𝐶𝐵)
(5)

where 𝐸𝐶𝐶𝐷𝐿 is the energy consumption caused by the
increase in the drag coefficient (L/100km); 𝐸𝐶𝐶𝐴𝐿 is the
hardware operation energy consumption cost of the automa-
tion function of the intelligent car (L/100km); 𝐸𝐶𝐶𝐶𝐿 is
the hardware operation energy consumption cost of the
connection function of the intelligent car (L/100km); 𝐸𝐶𝐶𝑄𝐿
is the energy consumption generated by the hardware quality
(L/100km); 𝐸𝐶𝐵 is the energy consumption of the traditional
car, which is assumed to be 13.6 kwh/100km.

2.3. Data Description. According to the calculation model,
the required data is the list of the hardware, including
types, number, average rated power, and average quality. For
example, for computing platform, we selected the Nvidia
Drive PX2 for the primary intelligent vehicle and the Nvidia
Drive Pegasus for the Intermediate intelligent vehicle. The
average power is 500w and 600w, while the quality is both
5.1 kg. It is important to note that the computing platform is
a key component. In order to ensure the safety of intelligent
vehicles, the redundancy of the computing platform needs to
be considered. So, it is assumed that the intelligent vehicle
was equipped with two computing platforms. And, for the
32-line LiDAR, we selected Velodyne HDL-32E, Velodyne
VLP-32C,QuanergyM8, and RoboSense RS-LiDAR-32.They
have an average quality of 0.93 kg and an average power
of 12.1W. And for millimeter wave radar (middle distance),
Continental SRR510 and Continental SRR520 were selected.
They have an average quality of 0.12 kg and an average power
of 4.5W. More details are shown in Table 1.

According to the definition of intelligent vehicle in the
Section 2.1, only a few primary intelligent vehicles are being
tested. And the hardware configuration of intelligent vehicles
that developed by various companies is different. So the
number of each hardware is not clear yet. Even more difficult
is that current hardware solutions are still uncertain andmost
companies are not actively sharing data that is considered to
be trade secrets. In the future, hardware solutions may also
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be completely changed as technology advances. For example,
Tesla has always insisted that automatic driving does not
require a laser radar. Because of those uncertainties, we have
found some representative companies’ products for analysis,
sorted out more detailed and specific data, and gave a quanti-
tative hypothesis of the number of each hardware.The Cruise
AV is equipped with 5 LiDARs, 16 cameras, and 21 radars
[23]. And the number of the hardware equipped on the Ford
and Waymo‘s self-driving vehicles has not been announced
in the safety report [24, 25]. By investigating a large number
of professional literature, product manuals, research reports,
and interviewing relevant experts, the number of hardware
is assumed, as shown in the Table 1. The intensity factor of
the relevant hardware and the time factor of the relevant
hardware are defined by the relevant expert. Relatively, its
value will be a little subjective. But in order to show more
complete and detailed calculation process, intensity factor
and time factor are shown in Table 2.

3. Results and Discussion

This section presents the results and discussions in the study.
Section 3.1 shows the fuel consumption cost at different
levels of intelligence. Section 3.2 shows the Fuel consump-
tion components of various hardware at different levels of
intelligence, identifying the key hardware that affects the fuel
consumption cost. After that, Section 3.3 conducts a single-
factor analysis to compare the influencing factors.

3.1. Fuel Consumption Cost. According to the data assump-
tion and model above, the fuel consumption cost at different
levels of intelligence is shown in Figure 3, considering the
energy consumption caused by the additional intelligent
hardware operation, quality and drag coefficient. Automotive
intelligence dramatically increases the fuel consumption.
Compared with traditional cars, the fuel consumption of
a primary intelligent car increases by 0.78 L/100km. The
fuel consumption of an advanced intelligent car increases by
1.86 L/100km. The cost of fuel consumption increases as the
level of intelligence increases. From the composition of the
energy consumption cost of the intermediate intelligent car,
it can be found that the automation function has the highest
fuel consumption ratio, up to 80%. And the connection
function is second, accounting for 23%. In contrast, energy
consumption cost generated by the quality and increased drag
coefficient is small.

3.2. The Key Hardware. The energy consumption cost of
automotive intelligence is generated by new hardware.
According to the number, quality, power, intensity factor,
and time factor, the energy consumption cost ratio of each
hardware under different intelligence levels is calculated, as
shown in Figure 4. Computing platforms, LiDAR,millimeter-
wave radars, displays, gateways, and cameras are all relatively
high-energy hardware. Among them, the computing plat-
form has the highest energy consumption, up to 69% in the
primary intelligent car. This is due to the fact that, regardless
of the automation function or the connecting function, all

data processing and decision-making are performed by the
computing platform. As the level of intelligence increases, the
amount of data increases. The increase in the amount of data
that needs to be processed makes the computing platform
consume more energy. Secondly, the energy consumption
cost of laser radar accounts for 10% of the intermediate
intelligent car. This is because the number of laser radars
required for autonomous driving is high. For example, the
number of different types of radars equipped in the advanced
intelligence class is up to 24. In general, the most critical
hardware in the energy cost ratio is the computing platform
and LiDAR.

3.3. Single-Factor Analysis. Multiple factors potentially influ-
ence the assessment of energy consumption cost. In order
to evaluate the impact of various influencing factors on
energy costs, a single factor analysis of key influencing
factors is performed in the following sections. Influencing
factors including connection strength, computing platform
performance, and LiDAR performance are considered.

3.3.1. Connection Strength. Connection time and data trans-
mission volume are key parameters that decide the effect in
reducing fuel consumption cost of intelligent cars. Connec-
tion strength is defined as the multiplier of on-line time and
data transmission volume. Connection strength benchmark
(100%) is assumed to be 95% connection time and rated
power operation. In order to meet the most basic functional
requirements, the connection strength is required to be no
less than 20%. Fuel consumption costs of intelligent vehicle
under different connection strength are compared in Figure 5.

The connection strength has relatively large influence
on the fuel consumption cost of intelligent vehicles. When
the connection strength is changed from 100% to 20%, the
fuel consumption costs are influenced by 7%, 10%, and
19% in primary, intermediate, and advanced intelligent cars.
Connection strength has the greatest influence on advanced
intelligent vehicle.

Since the connection strength is directly related to the
user experience, the enterprise cannot technically limit the
connection strength and can only guide the consumers to use
the connecting function less.

3.3.2. Computing Platform. As explained in Section 3.2, the
hardware that accounts for the highest proportion of energy
consumption costs for intelligent cars is the computing
platform. The computational speed and rated power of the
computing platform are key parameters that determine the
energy cost of computing platform. Computing platform
performance improvement is defined as the ratio of com-
putational speed progression to rated power advancement.
For example, if the computing platform’s rated power is fixed
and the calculation speed is doubled, the performance is
increased by 100%. Or the computing platform’s calculation
speed is fixed, but the rated power is reduced by half, and the
performance is increased by 100%. The energy consumption
cost of different levels of intelligent cars under different
computing platform performance is shown in Figure 6.
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Figure 8: The impact of intelligent car on the fuel consumption of fuel vehicles and the cruising range of electric vehicles.

Computing platform performance has a significant
impact on the energy cost of the intelligent car. When the
performance is doubled compared with the current situation,
the energy consumption cost of the primary, intermediate,
and advanced intelligent car is reduced by 30%, 33%, and 34%,
respectively. The impact on a higher level of intelligence is
greater. It can be concluded that a low-energy consumption
computing platform is an important core technology for the
intelligent car.

3.3.3. LiDAR. As explained in Section 3.2, the hardware
that accounts for the second highest proportion of energy
consumption costs for the intelligent car is the LiDAR. The
sensing capability and rated power of the LiDAR are key
parameters that determine the energy cost of the LiDAR.
LiDAR performance improvement is defined as the ratio
of the sensing capability progression to the rated power
advancement, which is as similar as the computing platform.
The energy consumption cost of different levels of intelligent
cars under different LiDARperformance is shown in Figure 7.

Compared with the connection strength and the perfor-
mance of the computing platform, LiDAR performance has
little impact on the energy consumption cost of the intelligent
car. Even if the performance of the LiDAR is doubled, it can
only reduce the energy consumption cost by 5%. This shows
that if only one component just like LiDAR is improved, the
energy consumption cost of the car reduction is small. In
the future, the improvement of energy consumption of the
intelligent car should emphasize the overall optimization.

4. Policy Implications

The average fuel consumption of new vehicles in 2020 needs
to be reduced to 5.0 liters/100 kilometers, and 4.0 liters/100
kilometers in 2025 [17]. Fuel vehicle’s fuel consumption
regulations are becoming more stringent. Based on the
4L/100km regulatory requirements in 2025, the primary
intelligent car only has an upper fuel consumption limit of
3.22L /100km for driving for fuel vehicle. And the intelligent
energy consumption cost of the advanced intelligent car is
1.56 L/100km, leaving only the upper limit of 2.44 L/100km
for driving. Intelligentization greatly increases the difficulty
of the automotive products to meet regulatory requirements.
The development of intelligent cars using fuel vehicle plat-
forms will face the challenge of severe regulatory compliance.

Follow-up analysis is based on an electric car with a
cruising range of 250 km. As the total energy of the vehicle
battery is fixed, supplying more energy to various type of
hardware leads to a significant reduction in the cruising range
of the electric vehicle. Based on equation (1), the intelligent
fuel consumption cost was converted into electricity cost.The
cruising range of advanced intelligent electric vehicles was
reduced to 187 km, as shown in Figure 8. A drop of up to 25%
is unacceptable to consumers. On the other hand, such a high
energy cost means a significant increase in the cost of use.
This leads consumers to think more about whether to buy an
intelligent electric car.

The electrification of automobiles is the general trend.
Fuel consumption regulations are becoming more stringent,
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and it is difficult to meet regulatory standards if batteries
are not available when necessary. On the other hand, battery
power can respond to intelligent demands while automati-
cally driving as soon as possible. Therefore, it is necessary to
assemble the battery in the car.

However, it is not feasible to rely solely on the battery.
Intelligent function will increase the load on the power
battery. On the other hand, the internal combustion engine
technology is relatively mature, and the cost of increasing the
number of batteries ismuch higher than the cost of increasing
the volume of the fuel tank.

Therefore, Range Electric Vehicle (REV) and Plug-in
Hybrid Electric Vehicle (PHEV) will become a long-term
choice, which is the combination of electricity-based energy
consumption and oil-based energy storage.

5. Conclusions

There exist studies that focus on the energy impacts of
intelligent vehicle.These studies discussed the energy savings
of intelligent vehicles. However, few studies are conducted
to evaluate negative impact of intelligent vehicles on energy
consumption. As developing intelligent vehicles is the trend
of the times and 50% of the vehicles sold in China in 2025
are intelligent vehicles, a detailed study on negative impact
on energy consumption is necessary. With the aim of filling
such a gap, in this study, the fuel consumption cost per 100
kilometers of hardware mounted on the intelligent vehicle
is estimated. Moreover, multiple factors potentially influence
the fuel consumption cost. Therefore, the key hardware that
affects energy consumption is identified and a single factor
analysis is also conducted in this study.

In this study, vehicle fuel consumption costs at different
levels of intelligence are calculated, considering the energy
consumption of the automation function and connecting
function, the energy consumption cost generated by the
quality, and the wind resistance. Based on the research,
vehicular intelligentization significantly increases driving
fuel consumption.The energy consumption increments from
primary to advanced are 0.78, 1.56, and 1.86L/100km, respec-
tively. Among them, the automation function consumed the
highest proportion, up to 80% in advanced intelligence scene.
The connecting function consumed the second, up to 33%
in advanced primary scene. The energy consumption cost
generated by the quality and the wind resistance of hardware
quality account for a relatively small proportion.

Single factor analysis is also conducted in this study.
The most impressive influencing factors include connection
strength, computing platform performance, and LiDAR per-
formance. The results indicate that computing platform is
the key hardware that has the greatest impact on energy
consumption costs. The significant increase in computing
platform performance can reduce the fuel consumption cost
of primary, middle, and advanced intelligence by 30%, 33%,
and 34%, respectively. When the connection strength is
changed from 100% to 20%, the fuel consumption cost was
influenced by 7%, 10%, and 19%. However, the significant
increase in LiDAR performance can only reduce the fuel
consumption cost by 5%.

The suggestion for choosing power platform of intelligent
vehicle is proposed in this study. Vehicular Intelligentization
has become the trend of the times, which will change the
choice of vehicle power platform and technical route for a
long time. On the one hand, the cruising range of electric
vehicles has been shortened. On the other hand, it is more
difficult to meet the fuel consumption regulations of fuel
vehicles.Therefore, REV and Plug-inHybrid Electric Vehicle,
the combination of electricity-based energy consumption
and oil-based energy storage, will become a long-term choice.

This study still has its limitations. Firstly, the operating
intensity factor of various types of hardware is assumed in
this study. This assumption is due to a lack of reliable data.
Secondly, the energy consumption cost of redundancy in
steering and braking systems is not considered, which may
increase the energy consumption cost in the future. Thirdly,
only the negative impact of vehicular intelligentization on
energy consumption is discussed. The results cannot show
the complete impact of vehicular intelligentization on energy
because this research focuses on the negative impact of the
intelligent vehicle on energy consumption.
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