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Abstract: Intelligent vehicles are expected to yield significant benefits in traffic safety,
traffic efficiency, energy conservation, and carbon emission reduction. As the collabo-
rative intelligence technology route becomes an industry consensus, intelligent vehicles
will generate greater social benefits under the empowerment of roadside intelligence in-
frastructure. At the same time, the introduction of roadside intelligence infrastructure
also adds corresponding deployment costs and operation and maintenance costs. Cur-
rently, assessments of the comprehensive social benefits and cost inputs associated with the
application of vehicle–road collaborative intelligence systems remain unclear, making it
difficult to provide effective references for industry development. Therefore, it is necessary
to conduct a comprehensive assessment of the multi-dimensional benefits generated by
collaborative intelligence systems and the incremental costs. This study constructs a social
value assessment model for vehicle–road collaborative intelligence systems, which includes
three benefit sub-models for safety, efficiency, and carbon emission reduction, as well as
two cost sub-models for vehicle-side networking and roadside intelligence infrastructure.
Beijing is selected for case analysis. The social benefits and social incremental cost inputs
of different intelligence deployment scenarios are scientifically evaluated and analyzed.
The study indicates that by deploying roadside intelligence infrastructure and in-vehicle
networking terminals as planned in Beijing, an accumulated safety benefit of 925.6 billion
RMB, a traffic efficiency benefit of 628.9 billion RMB, and a carbon emission reduction
benefit of 2.66 billion RMB are expected to be generated from 2024 to 2050. The cumulative
cost investment of 28.8 billion RMB in roadside intelligence infrastructure and vehicle
networking terminals is projected to yield approximately 20.8 times the increment in social
comprehensive benefits. The deployment progress of roadside intelligence infrastructure
and the loading progress of fleet networking terminals should be fully coordinated to
maximize the social value of the system. The corresponding research findings can provide
references for city managers in decision-making on intelligent road deployment, and for
the coordination of vehicle manufacturers in equipping vehicle networking terminals.

Keywords: collaborative intelligence system; social benefit; safety; efficiency; carbon
emission reduction; incremental cost

1. Introduction
China has held the top position in global automobile production and sales for

15 consecutive years, with a record high of 30.16 million vehicles produced and 30.09 million
vehicles sold in 2023 [1]. The sustained high operation of automobile sales led to a vehicle
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ownership of 336 million in China by 2023 [2], making it the country with the highest
vehicle ownership in the world. With the continuous increase in the stock of vehicles,
automotive social issues, such as traffic accidents, road congestion, and exhaust pollution,
have become increasingly severe. According to data from the National Bureau of Statis-
tics, traffic accidents in China resulted in 60,676 fatalities in 2022 [3]. Without policy and
technological measures, traffic safety issues are expected to become even more concerning
with increasing vehicle ownership. In terms of traffic efficiency, with an increase in vehicle
ownership, 86% of the 100 major cities in China saw an increase in congestion indices
during rush hours in 2023 compared to 2022, with an average increase of 7.17%, and some
cities saw the highest increase reach 26.92%. Beijing ranks first among the most congested
cities in China [4]. In terms of environmental impact, China’s transportation sector emitted
930 million tons of carbon dioxide in 2020, accounting for 15% of the country’s terminal
carbon emissions, with road traffic carbon emissions accounting for 90% of transportation
carbon emissions [5]. Traffic congestion leads to more idling and acceleration/deceleration
operational conditions of vehicles, which will further increase energy consumption, carbon
emissions, and pollutant emissions. The social issues of automobiles urgently need to be
addressed through technological means and business innovation.

Intelligent vehicles, as a new generation of automobiles equipped with complex en-
vironmental perception, intelligent planning, and decision-making capabilities [6], are
expected to yield significant benefits in various aspects, such as traffic safety [7,8], traffic ef-
ficiency [9–11], and energy conservation and carbon emission reduction [12,13]. Particularly
as the collaborative intelligence approach gradually becomes an industry consensus [14], in-
telligent vehicles, along with external intelligent infrastructure, including roadside sensing
devices, roadside computing, and cloud computing, integrated with latest communication
and network technologies, will possess enhanced intelligent capabilities. They will not
only substitute human driving actions more effectively but also generate greater social
benefits. For instance, the “high-dimensional perspective” of roadside intelligence devices
can address long-tail issues, such as occlusions and blind spots, from a purely vehicle-
centric viewpoint [15]. They can also provide redundant perception and decision-making
information to ensure safety redundancy in case of in-vehicle intelligent device failure,
further reducing the probability of traffic accidents. Fewer traffic accidents also imply
higher traffic efficiency. Through the collaboration of data from multiple terminals in a
vehicle–road collaborative intelligence system, multi-vehicle cooperative planning and
control at the road section and network levels can be achieved, enhancing overall traffic
efficiency. At the same time, collaborative intellectualization will add to the deployment
costs of roadside intelligence infrastructure and its ongoing operational and maintenance
costs. City governments still have many concerns about the business models for intelligent
infrastructure deployment and the actual social value it can generate. Currently, the de-
ployment of roadside intelligence infrastructure is still fragmented, which is not conducive
to supporting the large-scale application of intelligent driving technology, resulting in
low participation from vehicle manufacturers. The collaborative intelligence technology
route involves different vehicle-side and roadside intelligence schemes. It is necessary to
scientifically evaluate and analyze the social comprehensive benefits and social incremental
cost inputs generated by vehicle–road collaborative intelligence systems. This study is
conducted against this backdrop.

Currently, most related research focuses on the benefit–cost assessment of specific
technologies in intelligent vehicles, or the analysis of specific aspects of benefits. Schaudt
developed a prototype vehicle to study the collision avoidance effectiveness of the Blind
Spot Monitoring and Warning (BSD) function, conducting extensive real-world vehicle
testing [16]. Samantha et al. used simulation methods to evaluate the collision avoidance
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effectiveness of Automatic Emergency Braking (AEB) for vehicle and pedestrian collisions
in the United States [17]. The Australian Transport Council led the Safety Feature Assess-
ment Project, with the core objective of identifying high-priority safety features among
15 functions, including forward collision warning, driver fatigue monitoring, and lane de-
parture warning [18]. Guériau et al. established a multi-agent cooperative traffic model in
the traffic simulator MovSim, studying the potential of different traffic control strategies to
optimize traffic flow and alleviate congestion in various scenarios [19]. Song et al. applied
traffic simulation methods to assess the impact of L2 assisted driving functions on traffic
efficiency under different traffic flow rates [11]. Rommerskirchen et al. investigated the
fuel-saving effects of anticipatory driving assistance functions, like visual cues for road
information ahead, designing 18 road traffic scenarios and conducting experiments using a
driving simulator [20]. Vahidi et al. reviewed a large number of eco-driving literature based
on the first principles of motion and optimal control theory, and analyzed the potential of
intelligent connected vehicles in energy conservation and carbon emission reduction [21].
At the same time, some scholars have conducted research on the overall benefit assessment
of intelligent vehicles. Juan et al. reviewed previous assessments of the socio-economic
impacts of Intelligent Transportation Systems (ITSs), applying cost–benefit analysis (CBA)
and data envelopment analysis (DEA) to assess the socio-economic impacts of platooning
systems, including factors such as travel time, emissions, traffic stability, and operational
costs [22]. Farooq et al. also analyzed the economic impact of ITSs on other industries
using the Regional Input–Output Modeling System (RIMS 2), in addition to considering
the benefits of ITSs in terms of reduced time delays and fuel consumption [23]. Muller et al.
conducted a literature review on the environmental and economic benefits of ITSs, with
most studies indicating that ITSs can reduce carbon dioxide emissions by 5–20% and fuel
consumption by up to 20% [24]. He et al. designed a comprehensive benefit evaluation
system for urban ITSs from the point of view of three aspects: improving road capacity,
saving labor costs, and reducing traffic accidents. They estimated the effects of using ITSs
in Beijing from 2005 to 2008, concluding that the socio-economic benefits generated could
reach 22 times the original investment, demonstrating a significant “leverage effect” [25].
Kuang assessed the social comprehensive benefits and costs of an intelligent fleet in China
from a single-vehicle intelligence perspective [26]. Synthesizing existing research, there is
significant divergence in methodologies, experimental conditions, and scenario assump-
tions across different studies, leading to a variety of focuses in benefit assessments, and
making it challenging to standardize and compare the results. Moreover, few studies
have quantitatively analyzed the comprehensive benefits and cost inputs of vehicle–road
cooperative intelligence systems from a macro perspective.

As the connotations of cooperative intelligent transportation systems become richer,
and the understanding of their multi-dimensional benefit mechanisms deepens, the ex-
isting assessment methods and results are no longer applicable to the current stage of
development. There is an urgent need to construct a framework and methodology for
the social comprehensive benefit–cost analysis of collaborative intelligence systems. The
purpose of this study is to address the gap by providing a scientific evaluation and analysis
of the social comprehensive benefits and incremental cost inputs generated by vehicle–
road collaborative intelligence systems. The objective of this study is to address the gap
by providing a scientific evaluation and analysis of the social comprehensive benefits
and incremental cost inputs generated by vehicle–road collaborative intelligence systems.
From the perspectives of in-vehicle networking terminal integration and roadside intelli-
gence infrastructure deployment, the issue of how to achieve greater social comprehensive
benefits with lower incremental cost investment is addressed. This study constructs a
social value assessment model, which includes three benefit sub-models—safety, effi-
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ciency, and energy-saving and carbon emission reduction benefits—as well as two cost
sub-models—incremental costs of roadside intelligence and incremental costs of vehicle
networking. Beijing, with 7.589 million motor vehicles, ranks first among Chinese cities in
terms of vehicle ownership [27]. The city’s transportation is marked by prominent issues
of safety, congestion, environment, and energy. There is urgent demand for the intelligent
transformation of transportation infrastructure. This study selects Beijing as a case for anal-
ysis, and the research results can offer a reference for city managers, vehicle manufacturers,
and other relevant parties to participate collaboratively in further industrial development.

2. Social Value Evaluation Model
2.1. Model Framework

This study constructs a comprehensive social value assessment model for a vehicle–
road collaborative intelligence system, which includes three sub-models for benefits: safety,
efficiency, and carbon emission reduction benefits, as well as two sub-models for costs:
roadside intelligentization incremental cost and vehicle-side networking incremental cost.
By integrating various intelligentization schemes for vehicles and roadside infrastructure,
and considering diverse scenarios for the deployment of roadside intelligence infrastructure
and the penetration rates of vehicle networking terminals (V2X T-Box), the model leverages
traffic data, such as urban fleet driving patterns and the scale and usage intensity for
different road types, to calculate the social comprehensive benefits and incremental societal
costs under different scenarios, as illustrated in Figure 1. Further details of each sub-model
will be presented subsequently.
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Figure 1. Social value evaluation model of vehicle–road collaborative intelligence system.

2.2. Typical Intelligence Scheme and Scenario Setting
2.2.1. Typical Vehicle-Side and Roadside Intelligence Scheme

As the level of autonomous driving advances, intelligent vehicles require a significant
increase in the quantity and variety of sensors to enhance perception reliability in different
complex environments. The industry’s current standard for perception hardware configu-
rations at the primary (mass production stage), intermediate (mass production stage), and
advanced (testing stage) levels of autonomous driving are 5V3R, 5V5R2L, and 8V8R6L [28],
respectively, as shown in Figure 2.
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Referring to the classification of roadside intelligent perception by industry groups [29],
the schemes include primary perception with pure visual coverage, intermediate perception
with visual and millimeter-wave data coverage, and advanced perception with simultane-
ous coverage of visual and millimeter-wave data and LiDAR point cloud data, as depicted
in Figure 3. The roadside intelligent perception scheme selected in this study supports high-
level intelligent driving with the advanced perception scheme. The computing power of the
onboard computing platform and roadside MEC must match the corresponding perception
schemes and software complexity of both the vehicle-side and roadside intelligence. An in-
crease in perception-based hardware and more complex neural networks will mean greater
computing power requirements for both the vehicle-side and roadside, jointly meeting the
perception and computational decision-making needs of different levels of autonomous
driving functions. Related results have been published in previous studies [28].
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2.2.2. Forecast of Vehicle Ownership in Beijing

Beijing controls the growth of its vehicle ownership by regulating the number of
new license plates issued. Since 2018, the number of new license plates issued has been
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basically stable, at around 100,000 per year. Therefore, the increase in vehicle ownership
is determined by the number of new license plate indicators issued. The proportion of
different levels of intelligent vehicles can be obtained through the “Intelligent Connected
Vehicle Technology Roadmap 2.0”, as shown in Figure 4.
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2.2.3. Vehicle Networking Scenarios and Roadside Intelligence Deployment Scenarios

In the deployment of vehicle networking terminals, both the “ Intelligent Connected
Vehicle Technology Roadmap 2.0” and the “C-V2X Industrialization Path and Schedule
Research White Book” indicate that by 2025, 50% of new vehicles will be equipped with a
V2X T-Box to achieve connectivity, which is equivalent to all newly sold intelligent vehicles
being equipped with a V2X T-Box [30,31]. Our study adopts this as the “As Planned
Connected Vehicle Deployment Scenario (APCV)”. However, in current industrial practice,
the deployment progress is significantly lower than expected in China. The penetration
rates of the V2X T-Box in new vehicles nationwide were only 0.14% in 2021, 0.76% in 2022,
and 1.28% in 2023. Its penetration rate in the total vehicle ownership was less than one in
a thousand. This study begins to collect historical statistics on vehicles equipped with a
V2X T-Box from the year 2021. To better explore the impact of the V2X T-Box deployment
progress on social value, on the basis of the “APCV”, additional scenarios have been
proposed, namely the “None Connected Vehicle Deployment scenario (NCV)” and the
“Low Connected Vehicle Deployment scenario (LCV)”, totaling three vehicle networking
terminal deployment scenarios.

In the deployment of roadside intelligence infrastructure, our study sets the planning
progress of “C-V2X Industrialization Path and Schedule Research White Book” as the “As
Planned Intelligent Road Deployment Scenario (APIR)”, which means focusing on the
deployment of expressways and urban roads from 2022 to 2025, and gradually achieving
full coverage of intelligent infrastructure for motorways, class-1 highways, class-2 high-
ways, and urban roads after 2025. To explore the impact of the progress of intelligent
infrastructure deployment on social value, on the basis of the APIR, additional scenarios
have been proposed, namely the “None Intelligent Road Deployment Scenario (NIR)” and
the “Aggressive Intelligent Road Deployment Scenario (RGIR)”, totaling three scenarios
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for the progress of intelligent infrastructure deployment. The specific scenario settings for
vehicle networking terminal deployment and intelligent infrastructure deployment are
shown in Table 1.

Table 1. Intelligence scenario setting.

Classification Scenarios Notes

Vehicle networking

OBU equipment as planned (APCV) ➢ All intelligent vehicles will be equipped
with OBU.

OBU equipment less than
expectations (LCV)

➢ By 2030, more than 50% of primary intelligent
vehicles and more than 70% of intermediate and
advanced intelligent vehicles will be equipped
with OBU.

➢ By 2035, more than 80% of primary intelligent
vehicles and more than 90% of intermediate and
advanced intelligent vehicles will be equipped
with OBU.

➢ By 2040, all intelligent vehicles will be equipped
with OBU.

None of vehicles deployed (NCV) ➢ No vehicles will be equipped with OBU.

Roadside
intelligence
deployment

Deployed faster (RGIR)

➢ The construction of intelligent roads for all
highways is to be accelerated by 5 years
compared with the APIR scenario. Expressways,
class-1 highways, and class-2 highways will
achieve 100% intelligent road coverage by 2025,
2030, and 2035, respectively.

➢ Urban expressways and other urban roads will
be accelerated to achieve 100% intelligent road
coverage by 2025.

Deployed as planned (APIR)

➢ The intelligent road coverage rate of urban
expressways is expected to reach 30% by 2025
and achieve 100% coverage by 2028. Other
urban roads will begin in 2025 and achieve 100%
coverage by 2035.

➢ The intelligent road coverage rate of
expressways is projected to reach 20% in 2025
and achieve 100% coverage by 2030. Class-1
highways are expected to achieve an intelligent
road coverage rate of 10% by 2030 and achieve
100% coverage by 2035. Class-2 highways will
reach an intelligent road coverage rate of 10% by
2035 and achieve 100% coverage by 2040.

None of roads deployed (NIR) ➢ None of the roads will be deployed as
intelligent roads.

2.3. Social Values Evaluation Model
2.3.1. Quantified Assessment Sub-Model of Safety Benefit

Framework

The economic losses caused by traffic accidents mainly encompass five aspects: a loss
of social productivity, an increase in societal medical costs, direct property damage, eco-
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nomic losses due to time delays caused by congestion, and energy consumption loss due to
congestion delays. By employing a multivariable coupling model for safety effects, the com-
prehensive collision avoidance rates corresponding to different vehicle–road intelligence
schemes are obtained. Combined with fleet size and usage characteristic data, statistical
data of traffic accidents, and regional economic level data, the quantitative analysis of the
economic benefits brought about by the reduction of road traffic accidents through col-
laborative intelligence systems in the aforementioned five aspects is conducted, as shown
in Figure 5.
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Figure 5. Analysis framework for traffic operation safety benefits.

Data

Based on the predictions for the number of fatal accidents per billion kilometers in
China [32] and the forecasts for future car sales and vehicle ownership in Beijing [33],
it is assumed that the number of fatal accidents per billion kilometers in Beijing will be
consistent with the national forecast data. As the epidemic from 2020 to 2022 made it
impossible to obtain the real travel demand of vehicle users, in order to better reflect the
real travel demand, the impact of the epidemic is circumvented in the processing of the
average annual distance traveled per vehicle. This study selects data from 2010 to 2019,
over a period of 10 years, and calculates the average value. The relevant data, derived from
the “Beijing transport annual report”, have been compiled by the Beijing Transportation
Research Institute over the years. They are assumed to remain unchanged in the future.
Predictions for the number of fatal accidents, serious injury accidents, minor injury acci-
dents, and property damage only (PDO) accidents in Beijing from 2025 to 2050 are made
accordingly, as shown in Equation (1).

CNy,d,base = (Stock y × AVKT × FPTy,base × Degreed

)
/109 (1)

CNy,d,base represents the number of accidents with severity d in the year y under
the baseline scenario; Stocky represents the vehicle stocks in Beijing in the year y; AVKT
is the average annual distance traveled per vehicle in Beijing; FPTy,base represents the
number of fatal accidents per billion kilometers in the year y under the baseline scenario;
and Degreed represents the coefficient for the number of accidents with severity d, where
d = 0, 1, 2, 3 correspond to PDO (property damage only) accidents, minor injury accidents,
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serious injury accidents, and fatal accidents, respectively. By fitting the data from 2019,
it was found that the number of serious injury accidents, minor injury accidents, and
PDO accidents are 2.95 times, 47.06 times, and 147.7 times the number of fatal accidents,
respectively [34]. Historical data also generally conform to this multiple relationship; hence,
Degree0, Degree1, Degree2, and Degree3 are taken as 147.7, 47.1, 3.0, and 1, respectively.
Predictions for the number of fatal accidents per hundred million kilometers FPTy,base in
China from 2023 to 2050 have been given in previous studies by our research group [32].

The results indicate that under the baseline scenario, the number of traffic accidents in
Beijing generally follows a trend of initial decline followed by an increase, and is expected to
remain at a high level, as shown in Figure 6. The number of fatal traffic accidents in Beijing
is projected to be 889 in 2025, 794 in 2035, and 800 in 2050. The forecasted traffic accident
figures for Beijing can be viewed as a tug-of-war between the increasing trend in vehicle
ownership and the decreasing trend in the number of fatal accidents per billion kilometers.
Vehicle ownership in Beijing is primarily regulated by the government through policies
controlling the issuance of new licenses, which means that the actual market demand is
not fully realized, leading to a limited increase in vehicle ownership. The decline in traffic
accidents from 2025 to 2040 is mainly attributed to the improvement in motorization rates,
which leads to a decrease in the number of fatalities per billion kilometers. However, as the
reduction in fatalities per billion kilometers slows down from 2040 to 2050, the number of
traffic accidents rebounds and increases.
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Figure 6. Forecast of amount of traffic accidents in 2025–2050 (baseline scenario).

Integrated collision avoidance effectiveness

Existing research by our research group has developed a multivariable coupling model
for the safety effects of intelligent vehicles [7]. Based on the relationship between intelligent
configuration combinations and safety functions, as well as the relationship between safety
functions and accident types, the model utilizes basic hardware coupling sub-models,
safety function coupling sub-models, and accident type coupling sub-models to quantify
the comprehensive crash avoidance effectiveness corresponding to different hardware
combinations, as illustrated in Figure 7.
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Figure 7. Multivariable coupling model of intelligent vehicle safety effects.

The basic hardware is categorized into two main groups: vehicle-side and roadside,
comprising a total of 20 types of foundational hardware. Vehicle-side basic hardware
includes cameras, millimeter-wave radars, LiDARs, onboard computing platforms, and
onboard communication modules, as well as steering and braking systems. Roadside basic
hardware includes cameras, millimeter-wave radars, LiDARs, roadside units (RSUs), and
edge computing units. Safety functions are divided into lateral safety functions, longitudi-
nal safety functions, and comprehensive safety functions, including automatic emergency
braking (AEB), lane-keeping assistance (LKA), and navigate on autopilot (NOA), totaling
52 types of safety functions. Different safety functions are realized by invoking different
basic hardware, constructing a correspondence matrix between basic hardware combina-
tions and safety functions. Traffic accident types, based on the subjects involved in the
collision, can be divided into vehicle-to-vehicle accidents, vehicle-to-pedestrian accidents,
and single-vehicle accidents, including frontal collisions, rear-end collisions, pedestrian
collisions, and rollovers, totaling 15 accident types. Different safety functions have varying
degrees of collision avoidance effectiveness against different accident types, constructing a
correspondence matrix between safety functions and accident types. Hundreds of papers
published and indexed in mainstream databases, such as Web of Science, Taylor, Springer,
and Elsevier, were reviewed to extract data on the collision avoidance effectiveness of safety
functions. A meta-analysis model was used to obtain the collision avoidance effectiveness
of different safety functions against various accident types. Combined with statistical data
on the proportion of different accident types, the integrated collision avoidance effective-
ness brought about by different vehicle–road intelligent basic hardware combinations could
ultimately be obtained.

Based on the multivariable coupling model for the safety effects of intelligent vehicles,
we obtained the comprehensive collision avoidance effectiveness of different vehicle-side
intelligence schemes (Figure 2), as well as the comprehensive collision avoidance effec-
tiveness of intelligent vehicles combined with vehicle-to-vehicle real-time communication
(V2V) and advanced intelligent roads (IRA), as shown in Table 2. It is worth noting that
a primary vehicle-side intelligence configuration combined with advanced intelligent in-
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frastructure can achieve higher collision avoidance effectiveness than a single advanced
vehicle-side intelligence scheme.

Table 2. Integrated collision avoidance effectiveness of various hardware combinations.

Only Vehicle Vehicle + V2V Vehicle + IRA Vehicle + IRA + V2V

Primary-5V3R 56.3% 75.1% 94.9% 97.1%

Intermediate-
5V5R3L 77.8% 84.5% 96.2% 98.3%

Advanced-8V8R6L 89.2% 93.4% 98.3% 98.9%

The synergistic mechanism of intelligent configuration combinations can be under-
stood as follows. Firstly, an increase in the number of sensors leads to a broader coverage
angle and cross-validation of perception results, which enhances the comprehensive col-
lision avoidance effectiveness. Secondly, the integration of heterogeneous sensors such
as cameras, millimeter-wave radars, and LiDARs extends the range of perception and
increases the types and dimensions of perception information, thereby enhancing the com-
prehensive collision avoidance effectiveness. Thirdly, information exchange between V2V
(vehicle-to-vehicle), V2I (vehicle-to-infrastructure), and V2N (vehicle-to-network) expands
the coverage range and adds to the types and dimensions of perception information, further
enhancing the comprehensive collision avoidance effectiveness.

The number of traffic accidents in various vehicle–road intelligence deployment scenarios

Different vehicle–road intelligence deployment scenarios correspond to varying pen-
etration rates of vehicle networking terminals and mileage coverages of intelligent road
schemes. By integrating the stock and average annual distance traveled of intelligent
vehicles, the number of traffic accidents per billion kilometers under the baseline scenario,
and the comprehensive collision avoidance effectiveness of different levels of intelligent
vehicles operating in different driving environments, we calculated the reduction in fa-
tal accidents, serious injury accidents, minor injury accidents, and PDO accidents under
different intelligence deployment scenarios, as shown in Equation (2).

RCNy,d =
3
∑

v=1
(VSv,y × AVKT × FPTy,base ×

2
∑

r=1
(RTSr,y × (PVN2

y × (1 − ICAEv,r,1) + (1 − PVN2
y)× (1

−ICAEv,r,0))))× Degreed − CNy,d,base

(2)

RCNy,d represents the reduction in the number of accidents with severity d in the
year y under various vehicle–road intelligence deployment scenarios. VSv,y denotes the
number of vehicles of the level v in the year y, where v = 1, 2, 3 correspond to primary,
intermediate, and advanced intelligent vehicles, respectively. RTSr,y the proportion of total
mileage traveled on conventional and intelligent roads in the year y, where r = 1, 2 represent
conventional and intelligent roads, respectively. PVNy indicates the penetration rate of
vehicle networking terminals in the fleet in the year y. ICAEv,r,1 denotes the comprehensive
collision avoidance effectiveness of the level v intelligent vehicles traveling on conventional
or intelligent roads, where both the vehicle itself and the other vehicle are equipped with a
V2X T-Box. ICAEv,r,0 denotes the comprehensive collision avoidance effectiveness of level
v intelligent vehicles traveling on conventional or intelligent roads.

The number of fatalities reduced in road traffic accidents in Beijing from 2024 to 2050
under various intelligence deployment scenarios was obtained, as shown in Figure 8. All
seven vehicle–road intelligence deployment scenarios can significantly reduce the number
of traffic accidents. The large-scale deployment of intelligent vehicles is the foundation
for the decline in the number of traffic accidents. As the penetration rate of intelligent
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vehicles increases, the reduction in traffic accidents also becomes more significant. Under
the NIR-NCV scenario, which relies solely on vehicle intelligence, it is expected that the
number of fatal traffic accidents will be reduced by 9.78% (87 cases), 34.97% (285 cases),
74.90% (580 cases), and 86.07% (689 cases) in 2025, 2030, 2040, and 2050, respectively. In
the NIR-APCV scenario, where the deployment of vehicle networking terminals initially
has a modest effect on reducing traffic accidents, the impact becomes more noticeable in
the middle-to-late stages as the penetration rate of vehicle networking terminals increases.
Compared to the NIR-NCV scenario, it is anticipated that there will be an additional re-
duction of 0.11% (1 cases), 1.18% (10 cases), 4.14% (32 cases), and 2.99% (24 cases) in fatal
traffic accidents in 2025, 2030, 2040, and 2050, respectively. The reduction in traffic accidents
under the RGIR-LCV and APIR-LCV scenarios is basically equal. Accelerating the deploy-
ment of roadside intelligence infrastructure in the LCV scenario has a negligible impact
on reducing the number of accidents, while the APIR-APCV scenario shows a relatively
significant reduction in traffic accidents compared to the RGIR-LCV scenario. Therefore,
the effectiveness of intelligent road deployment in reducing traffic accidents is contingent
upon the widespread adoption of in-vehicle networking terminals, which determines the
pace of the decline in accident numbers. In the RGIR-APCV scenario, it is projected that by
2025, 2030, 2040, and 2050, the reduction in fatal traffic accidents will be 13.06% (116 cases),
45.26% (369 cases), 92.24% (715 cases), and 99.17% (794 cases), respectively.
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Figure 8. Reduction in fatal accidents in various vehicle–road intelligence deployment scenarios.

Quantitative Analysis of Safety Benefit

The social and economic losses caused by traffic accidents primarily encompass five
aspects: a loss of social productivity, direct property damage, an increase in societal medical
costs, economic losses due to time delays caused by congestion, and energy consumption
losses caused by congestion [32]. These five aspects basically comprehensively cover all the
economic losses caused by road traffic accidents, as illustrated in Equation (3).

EC = PL + PD + MC + TDC + SE (3)
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EC stands for the comprehensive economic loss due to traffic accidents, PL represents
the loss of productivity, PD denotes the direct property damage, MC refers to the increased
societal medical costs, TDC signifies the economic loss due to time delay, and SE indicates
the energy consumption loss due to traffic congestion.

The productivity loss caused by traffic accidents represents the disappearance of the
victims’ social productivity due to premature death, while severe or minor injuries may
result in a discount or even loss of the victims’ ability to work. The quantification of
productivity loss caused by traffic accidents in the year y is shown in Equation (4).

PLy =
3

∑
d=1

(
VSLy × CASd × VSId

)
(4)

VSLy represents the statistical value of life in the year y, following the conclusions of
the International Road Assessment Program, which is set to 70 times the per capita GDP of
that year [35]. CASd represents the number of casualties caused by accidents with severity
d, assuming that each fatal accident results in one death, each serious injury accident results
in one serious injury, and each minor injury accident results in one minor injury, with PDO
accidents causing no casualties. VSId is the coefficient of the statistical value of injury
relative to the statistical value of life, with minor injuries set to a coefficient of 0.003 and
serious injuries set to a coefficient of 0.25 [36].

Traffic accidents and casualties also lead to an increase in societal medical costs, with
varying degrees of severity in traffic accidents resulting in different medical costs. The
increase in societal medical costs due to traffic accidents in the year y is as shown in
Equation (5).

MCy =
3

∑
d=1

(
CNy,d,base × mcd

)
(5)

mcd represents the medical economic loss due to traffic accidents with severity d.
Referring to the “China Health Statistics Yearbook 2022”, published by the National Health
Commission [37], the societal medical economic losses resulting from traffic accidents of
different severity levels were obtained, as shown in Table 3.

Table 3. Medical–economic losses from traffic accident injuries and deaths.

Severity Medical Cost (RMB) Notes

Slight injury 340.7 ➢ Medical costs are mainly for
outpatient charge.

Serious injury 11,398.4
➢ Medical costs include

hospitalization, treatment, surgery,
outpatient, etc.

Death 56,648.9 ➢ Compared to serious injury, funeral
expenses are added.

Direct property loss includes the damage to vehicles, cargo, and other related facilities,
as well as the costs associated with on-site handling. The average direct property loss per
accident is based on the data disclosed in “People’s Republic of China road traffic accident
statistics Annual report”, and equals 11,274 RMB. The direct property loss caused by traffic
accidents in the year y is calculated as shown in Equation (6).

PDy =
3

∑
d=0

CNy,d,base × DCbase (6)

DCbase denotes the average direct property loss per accident.
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The economic losses due to time delays caused by congestion are related to the accident
handling time, traffic volume, and unit time cost, with the severity of the accident affecting
the handling time. On average, it takes about 1.07 h to handle each accident in China [34].
It is assumed that for PDO and minor injury accidents, the average congestion time loss
per vehicle at the scene is one-eighth of the accident handling time, approximately 0.13 h,
with the road capacity dropping to three-fourths of its original level after the accident. For
serious injury accidents, the average congestion time loss per vehicle is one-fourth of the
accident handling time, about 0.27 h, with the road capacity dropping to half of its original
level after the accident. For fatal accidents, the average congestion time loss per vehicle
is half of the accident handling time, around 0.54 h, with the road capacity dropping to
zero after the accident. It is further assumed that, on average, each vehicle is occupied by
one driver accompanied by 0.5 passengers. The average time loss per vehicle is shown in
Equation (7). The economic loss due to time delay is shown in Equation (8).

ARTd =
1
2
× PT ×

(
1 − CAPd

F

)
(7)

TDCy = AWy ×
9

∑
r=1

3

∑
d=0

(AAHTrt × NCrt,d × ARTd) (8)

ARTd represents the average congestion time loss per vehicle in accidents with severity
d. PT denotes the processing time at the scene of the accident. CAPd refers to the proportion
of traffic capacity change after accidents with severity d. F stands for the traffic flow at the
scene of the accident. TDCy is the economic loss due to traffic congestion and delay caused
by traffic accidents in the year y. AWy is the average unit time value in the year y, which
is the average hourly wage. AAHTr is the average hourly traffic flow on the road type
rt, where rt = 1, 2, 3, . . ., 9, respectively, represent urban expressways, urban main roads,
urban secondary roads, urban local roads, highways, class-1 highways, class-2 highways,
class-3 highways, and class-4 highways. NCrt,d is the number of accidents with severity d
on the road type rt each year.

When a traffic accident occurs ahead, the vehicles in the trailing convoy are generally
idling during the congestion period to ensure the operation of in-vehicle equipment such
as air conditioning. Given the significant differences in energy consumption losses among
vehicles of different power types, it is necessary to calculate the energy consumption losses
for new energy vehicles (NEVs) and internal combustion engine vehicles (ICEVs) separately.
The energy consumption loss due to traffic congestion caused by road traffic accidents is
illustrated in Equation (9).

SEy =
9
∑

r=1

3
∑

d=0
(AAHTr × NCr,d × ARTd × Prop_NEVy × EC_idleNEV × Priceelec

+ AAHTr × NCr,d × ARTd × Prop_ICEVy × EC_idleICEV

× Pricegas)

(9)

SEy represents the energy consumption loss of the fleet due to traffic accidents in
the year y. Prop_NEVy denotes the penetration rate of NEVs in the year y. Prop_ICEVy
signifies the penetration rate of ICEVs in the year y. Priceelec is the price per kilowatt-hour
of electricity. Pricegas is the price per liter of gasoline. EC_idleNEV refers to the idling energy
consumption of NEVs. EC_idleICEV indicates the idling power consumption of ICEVs.

Based on various vehicle–road intelligence deployment scenarios and their impact
on the number of traffic accidents in Beijing (Figure 8), as well as the quantification of
economic losses caused by fatalities, serious injuries, minor injuries, and PDO accidents, a
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comprehensive safety benefit for different scales of vehicle–road intelligence deployment
scenarios can be obtained, as shown in Equation (10).

ECBy =
3

∑
d=0

RCNy,d

CNy,d,base
×
(

PLy + MCy + PDy + TDCy + SEy
)

(10)

2.3.2. Quantified Assessment Sub-Model of Traffic Efficiency Benefit

Different vehicle–road collaborative intelligence deployment scenarios, and the pene-
tration rate of intelligent vehicles at different development stages, will have varying levels
of impact on traffic efficiency. Additionally, different types of roads have distinct structural
characteristics and designed service capabilities, and the enhancement of traffic efficiency
on different road types due to intelligence technologies is also different. By constructing
a traffic efficiency impact assessment sub-model, we obtained the changes in percentage
reduction in travel time per mile and percentage reduction in energy consumption per mile
under different road types, different input traffic flow rates, different penetration rates of
intelligent vehicles, and different vehicle–road intelligence deployment scenarios, relative
to the baseline scenario of fully manual driving fleets. Combining the duration proportion
of different road types in Beijing’s road network under different traffic flow rate ranges,
as well as data on the scale of road mileage, energy (electricity, fuel) prices, and the unit
time value, we can quantify the economic benefits produced by vehicle–road collaborative
intelligence deployment in terms of traffic efficiency. The analytical framework for traffic
efficiency benefits in this study is shown in Figure 9.
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Figure 9. Analysis framework for traffic efficiency benefit.

Based on existing studies within our group and on relevant research from the litera-
ture [11,21,38], the traffic efficiency benefits generated by the vehicle–road collaborative
intelligence system primarily encompass the economic benefits of travel time resulting
from improved traffic efficiency and the energy-saving economic benefits derived from
reduced traffic congestion. These two aspects basically cover the full range of economic
benefits from improved transportation efficiency, as shown in Equation (11).

TBy = TSEBy + EEBy (11)
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TSEBy denotes the economic benefits of travel time savings in the year y. EEBy

signifies the energy-saving economic benefits in the year y.

Sub-model of traffic efficiency impact assessment

Within the traffic efficiency sub-model, we have taken into account a range of schemes
and functional combinations for varying levels of intelligent driving, from primary to
advanced, and have modeled the intelligent driving behaviors across these levels, with
human-driven vehicles (HVs) modeled using the Wiedemann 99 model. Enhancements
such as roadside perception and computing devices extend vehicles’ capabilities, enabling
“high-dimensional perspective” perception and cooperative optimization decision-making.
Functions including cooperative lane changing, intelligent merging, and green wave pas-
sage further influence the intelligent driving behaviors of vehicles. We have chosen three
representative types of roads—urban expressways, urban main roads, and urban secondary
roads—and have modeled them in accordance with the “Urban Comprehensive Traffic
System Planning Standard GB/T 51328-2018 [39]”. Urban expressways are characterized as
semi-closed, while urban main and secondary roads are open, capturing a variety of road
scenario characteristics. These road types, with their distinct design service capabilities,
are assigned corresponding traffic flow rate combinations. Utilizing VISSIM and traffic
flow theory, we performed traffic flow simulations to determine the average travel time
per kilometer for each vehicle under various road types, traffic flow rates, and penetration
rates of intelligent vehicles, thereby assessing the impact of vehicle–road collaborative
intelligence. By integrating traffic flow data with vehicle dynamics theory, we calculated the
average energy consumption per kilometer for each vehicle under the same variables. To
more accurately reflect the impact of vehicle–road intelligence deployment, we established
a baseline using the average travel time per kilometer and energy consumption per vehicle
for human-driven fleets, against which we measured the percentage reduction in travel
time per mile and the percentage reduction in energy consumption per mile for different
intelligence deployment scenarios. The traffic efficiency impact assessment sub-model is
depicted in Figure 10.
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Due to varying travel demands among the public at different times of the day, there
is a significant disparity in road traffic volumes across various time periods. Obtaining
real-time traffic flow data for different road types within an urban network is challenging.
Additionally, it is difficult to perform high-resolution analysis and calculations for all
traffic flow conditions across all road types in practical simulations. This study combines
the average operating speeds of vehicles on various types of roads in Beijing over a 24 h
period [40] with the relationship between average speed and average traffic volume for
each road type [41]. We were able to determine the duration proportion of different traffic
volume intervals for various road types in Beijing, and, consequently, derive the average
daily traffic volume for different road types across different traffic flow rate intervals. The
average values within typical traffic volume intervals for different road types were selected
for simulation, thereby allowing us to obtain the percentage reduction in travel time per
mile and the percentage reduction in energy consumption per mile across different traffic
flow intervals. The simulation results for urban expressways and urban main roads can be
found in the Appendix A.

Quantitative analysis of traffic operation efficiency benefit

Based on the traffic flow simulation results, combined with the duration proportion of
different traffic flow rate ranges for various road types in Beijing, as well as data on the scale
of road mileage and the unit time value, this study quantitatively assesses the economic
benefits of enhancing traffic efficiency. The economic benefits of travel time saved by the
vehicle–road collaborative intelligence system in the year y are illustrated in Equation (12).

TSEBy =
9

∑
r=1

∑
q

1
vr,q

×∆tr,q,p × f lowr,q × mileager × AWy × 365 (12)

vr,q represents the average speed of fully human-driven vehicle fleets on road type r
under traffic flow rate q. ∆tr,q,p denotes the percentage reduction in travel time per mile
on road type r with a traffic flow rate of q and a penetration rate of intelligent vehicles p.
f lowr,q signifies the average daily traffic volume on road type r under traffic flow rate q.
AWy is the unit time value in the year y.

The energy-saving economic benefits brought about by the vehicle–road collaborative
intelligence system primarily consist of two parts: the energy-saving benefits for the ICEV
fleet and the energy-saving benefits for the NEV fleet, as shown in Equation (13).

EEBy =
9
∑

r=1

4
∑

q=1
ECNEV×∆ECr,q,p × f lowr,q × Prop_NEVy × mileager

× Priceelec × 365

+
9
∑

r=1

4
∑

q=1
ECICEV×∆ECr,q,p × f lowr,q × Prop_ICEVy

× mileager × Pricegas × 365

(13)

ECNEV represents the average energy consumption per mile for NEVs, while ECICEV

denotes the average energy consumption per mile for ICEVs. ∆ECr,q,p is the percentage
reduction in energy consumption per mile on road type r with a traffic flow rate of q and
a penetration rate of intelligent vehicles p. It is assumed that the percentage reduction in
energy consumption for both ICEVs and NEVs is the same. In recent years, the proportion
of diesel vehicles in China’s passenger car market has been declining, and currently, diesel
vehicles account for less than 1% of the total vehicle ownership. It is assumed that the ICEV
fleet in Beijing is composed entirely of gasoline vehicles. The relevant data and parameters
are shown in Table 4, where the price of gasoline used in this study is the average of the
lowest (7.44 RMB/L) and highest (8.43 RMB/L) prices of 92-octane gasoline in 2023.
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Table 4. Data and parameters related to traffic benefit assessment.

Value Unit Source Notes

EC_idleNEV 1.5 L/h

[42]

➢ Assuming the idling energy
consumption levels of NEVs and
ICEVs remain unchanged.EC_idleICEV 1 kW

ECNEV 0.13 kWh/km
➢ Assuming the energy

consumption of NEVs and
ICEVs remain unchanged in
the future.ECICEV 0.062 L/km

Priceelec 0.722 RMB/kWh [38] ➢ Assuming the price of electricity
and gasoline remain unchanged
in the future.Pricegas 7.93 RMB/L [43]

2.3.3. Quantified Assessment Sub-Model of Carbon Emission Reduction Benefit

Vehicle–road collaborative intelligence systems will enhance road traffic safety, reduce
the number of traffic accidents, and consequently decrease the energy consumption losses
caused by traffic congestion and delays. Additionally, the improved traffic efficiency
brought about by collaborative intelligence systems will also affect the energy consumption
levels of fleets. Based on the reduction in road traffic accidents and the changes in per-
vehicle energy consumption due to changes in traffic efficiency, and combining the future
changes in the penetration rates of vehicles with different power types in the fleet, the
comprehensive change in energy consumption (including fuel and electricity) brought
about by vehicle-to-road collaborative intelligence can be obtained. By integrating the
changes in fleet energy consumption with the future carbon emission factors corresponding
to different energy types, the carbon emission reduction benefits brought about by vehicle-
to-road collaborative intelligence can be quantified. The sub-model of carbon emission
reduction benefit in this study is shown in Figure 11.
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Figure 11. Sub-model of carbon emission reduction benefit.

The energy-saving amount of the NEV fleets and ICEV fleets, respectively, under
different intelligence deployment scenarios are shown in Equations (14) and (15). The
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energy-saving amount of both power types of fleets consist of two parts: one part is the
reduction in congestion energy loss due to the improvement of traffic safety, and the
other part is the change in the average energy consumption level of the fleet due to the
improvement of traffic efficiency.

ES_elecy =
9
∑

r=1

3
∑

d=0

RCNy,d

CNy,d,base
× AAHTr × NCr,d × ARTd × Prop_NEVy

× EC_idleNEV

+
9
∑

r=1

4
∑

q=1
ECNEV×∆ECr,q,p × f lowr,q × Prop_NEVy

× mileager × 365

(14)

ES_gasy =
9
∑

r=1

3
∑

d=0

RCNy,d

CNy,d,base
× AAHTr × NCr,d × ARTd × Prop_ICEVy

× EC_idleICEV

+
9
∑

r=1

4
∑

q=1
ECICEV×∆ECr,q,p × f lowr,q × Prop_ICEVy

× mileager × 365

(15)

ES_gasy is the energy-saving amount of NEV fleets in the year y. ES_elecy is the
energy-saving amount of ICEV fleets in the year y.

The carbon emission coefficient for gasoline throughout its lifecycle remains essentially
constant. As renewable energy generation becomes more widespread, the lifecycle carbon
emission factor for electricity will decrease year by year. By combining the energy-saving
amount of gasoline and electricity under different scenarios, the corresponding reduction
in carbon emissions can be obtained, as shown in Equation (16).

RA_GHGy = CE_Coe f gas × ES_gasy + CE_Coe f elec,y × ES_elecs,y (16)

RA_GHGy represents the carbon emission reduction in the year y under different
vehicle–road intelligence deployment scenarios. CE_Coe f gas is the lifecycle carbon emission
factor corresponding to gasoline. CE_Coe f elec,y denotes the lifecycle carbon emission factor
corresponding to electricity in the year y.

The carbon market price represents the marginal cost of carbon abatement. Based on
predictions of future carbon market prices, the carbon emission reduction benefits under dif-
ferent intelligence deployment scenarios can be quantified, as illustrated in Equation (17).

EBy = RA_GHGy × Price_GHGy (17)

Price_GHGy is the carbon market price in the year y.
The relevant literature has forecasted the lifecycle carbon emission factors for electricity

and carbon market prices for every five years from 2025 to 2050 [44,45]. The intermediate
year values can be obtained through linear interpolation. The lifecycle carbon emission
coefficient for gasoline is 91g-CO2eq/MJ, with the combustion phase contributing 76%
to the carbon emissions [46,47]. The fixed chemical reactions in the combustion phase
determine that the carbon emissions are relatively stable, and the production phase, where
oil refining and catalyst technologies are already mature, has limited potential for future
emission reductions. Therefore, it is assumed that the carbon emission factor per liter of
gasoline remains constant. The relevant parameters are shown in Table 5.
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Table 5. Carbon emission coefficient of gasoline and electricity.

Year 2025 2030 2035 2040 2045 2050 Unit Source

CE_Coe f elec 463.1 418.7 352.7 286.7 246.0 205.2 g/kWh [44]

CE_Coe f gas 2872.6 g/L [46,47]

Price_GHG 68 104 178 287 435 751 RMB/ton [45]

2.4. Social Incremental Cost Evaluation Model

The social incremental costs of vehicle–road collaborative intelligence systems mainly
include vehicle-side costs and roadside costs. The vehicle-side costs encompass the costs
of intelligent configuration and power consumption, while the roadside costs include the
deployment costs of intelligent infrastructure and corresponding power consumption costs.
Our study primarily explores the incremental social benefits generated by the deployment
of roadside intelligent infrastructure, considering the impact of different deployment
scenarios for roadside intelligent infrastructure and in-vehicle networking terminals on
incremental social benefits. In reality, the deployment of roadside intelligent infrastructure
under different schemes will also affect the vehicle-side intelligence schemes, thereby
influencing the costs of vehicle-side intelligence. This aspect has been thoroughly discussed
in our previous studies [28,33], and will not be reiterated here. The deployment of roadside
intelligent infrastructure requires the installation of in-vehicle networking terminals to
fully realize its value. Hence, the related costs of networking terminals in the fleet are also
within the scope of cost calculations in this study.

The annual deployment costs and power consumption costs of the fleet for in-vehicle
networking terminals are illustrated in Equations (18) and (19), respectively.

Costdeploy−networking,y =
v=3

∑
v=1

Salesv,y × PRv,y × costT−box,y (18)

Costusage−networking,y =
y

∑
i=2024

v=3

∑
v=1

Salesv,i × PRv,i×ecrT−box,i × (1 − OMRi,y) (19)

Salesv,y represents the sales volume of intelligent vehicles of grade v in the year y.
PRv,y denotes the penetration rate of in-vehicle networking terminals in intelligent vehicles
of level v in the year y. costT−box,y is the deployment cost of one in-vehicle networking
terminal in the year y. ecrT−box,i is the annual energy consumption cost generated by the
in-vehicle networking terminals deployed in the year i. OMRi,y is the y year’s turnover
rate of vehicles purchased in the year i.

Incorporating the roadside intelligence deployment schemes tailored for urban roads
and highways, as well as the hardware costs and power consumption of intelligent config-
urations in different years [33], the deployment costs and power consumption costs per
kilometer for advanced roadside intelligence schemes from 2025 to 2050 are illustrated
in Figure 12a,b, respectively. “IRA-H” represents the intelligence deployment scheme for
highways, and “IRA-U” represents the intelligence deployment scheme for urban roads.
With the advancement of technology, both the deployment costs and power consumption
costs per kilometer of intelligent roads trend downward. It is projected that the deployment
costs for advanced intelligence schemes on urban roads will be 1.28 million RMB/Km
in 2025, 0.6 million RMB/Km 2035, and 0.43 million RMB/Km in 2050. The power con-
sumption costs will be 44,000 RMB/Km/Year in 2025, 16,000 RMB/Km/Year in 2035,
and 10,000 RMB/Km/Year in 2050. The highway scheme differs from urban roads in the



Sustainability 2025, 17, 1565 21 of 39

deployment density of intelligent configurations, with the corresponding deployment costs
and power consumption costs being half of those for urban roads.
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Figure 12. Deployment cost and energy consumption cost of roadside intellectualization. (a) Deploy-
ment cost, (b) energy consumption cost.

3. Results and Discussion
3.1. Social Benefit Under Various Intelligence Scenarios
3.1.1. Traffic Safety Benefit

Based on the ability of different vehicle–road intelligence deployment scenarios to
reduce the number of traffic accidents in Beijing (Figure 8), a quantitative assessment of
the safety benefits generated in five dimensions—reducing the loss of social productivity,
lowering societal medical costs related to traffic accidents, reducing direct property dam-
age, decreasing economic losses due to time delays, and reducing energy consumption
losses—was conducted. A comparison of the cumulative comprehensive safety benefits
from 2024 to 2050 under five scenarios is illustrated in Figure 13.
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Figure 13. Safety benefits under various intelligence scenarios from 2025 to 2050.
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It can be observed that under the NIR-NCV scenario, where neither networking ter-
minals are installed in vehicles, nor is roadside intelligence infrastructure deployed, a
cumulative safety benefit of 769.8 billion RMB is projected to be achieved with single-
vehicle intelligence for the period from 2024 to 2050. Building on the planned deployment
of in-vehicle networking terminals, if combined with the planned deployment of road-
side intelligence infrastructure (APIR-APCV), the cumulative safety benefit will increase
to 925.6 billion RMB. Comparing the APIR-LCV and APIR-APCV scenarios, where the
deployment of roadside intelligence infrastructure is the same, the coverage of in-vehicle
networking terminals will better enhance safety benefits. Comparing the APIR-APCV,
RGIR-APCV, APIR-LCV, and RGIR-LCV scenarios, it can be seen that under the LCV sce-
nario, accelerating the deployment process of roadside intelligence infrastructure results
in a limited increase in cumulative safety benefits, generating only an additional safety
benefit of 2.8 billion RMB (compared to APIR-LCV), at which point the penetration rate of
in-vehicle networking terminals becomes the key factor constraining further enhancement
of safety benefits.

Among all the intelligence deployment scenarios, the reduction in the loss of social pro-
ductivity accounts for approximately 95% of the comprehensive safety benefits. The other
dimensions of benefits, ranked from largest to smallest by proportion, are the reduction
in direct property loss, reduction in economic losses due to congestion and delay, reduc-
tion in societal medical costs, and reduction in energy consumption loss, with respective
proportions of about 3.59%, 1.30%, 0.17%, and 0.01%.

3.1.2. Traffic Efficiency Benefit

Due to the high concentration of traffic volume on urban roads in the central urban
areas of Beijing, these roads bear the highest usage intensity among all types of roads
in the city, and are also the most congested. In contrast, highways of various grades are
primarily located in the surrounding jurisdictions of the central urban area. Although these
highways have a large scale in terms of mileage, they are essentially in a state of free traffic
flow because the population and economic activities in the surrounding jurisdictions are
relatively sparse, meaning the actual usage intensity of these roads is far from reaching
their designed service capacity. Therefore, this study only considers the traffic efficiency
benefits generated by urban expressways, main roads, and secondary roads. Based on the
results of traffic flow simulation, combined with the proportion of time spent in different
traffic flow rate ranges for different types of roads in Beijing, as well as data on the scale of
road mileage and the value of time per capita, the vehicle–road collaborative intelligence
system brings about travel time-saving economic benefits and energy-saving economic
benefits through improving traffic efficiency, as shown in Figure 14.

It is evident that the development of vehicle–road collaborative intelligence will sig-
nificantly enhance traffic efficiency benefits. Comparing the APIR-APCV and RGIR-LCV
scenarios, the former will cause an earlier climb in annual traffic efficiency benefits, even
though the coverage rate of road intelligence in the former is not as high as in the latter.
The timely deployment of in-vehicle networking terminals is key to leveraging the traffic
efficiency benefits of vehicle–road collaborative intelligence systems. The traffic efficiency
benefits produced annually by the APIR-LCV and RGIR-LCV scenarios are essentially over-
lapping, further illustrating that if the development of vehicle networking does not meet
expectations, the significance of accelerating the deployment of roadside intelligence infras-
tructure is limited. After 2040, the penetration rate of vehicle networking is basically 100%,
and the annual traffic efficiency benefits of the four scenarios—APIR-LCV, APIR-APCV,
RGIR-LCV, and RGIR-APCV—are essentially the same, with the annual traffic efficiency
benefits further increasing alongside economic development and the rise in per capita
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GDP. Under the NIR-NCV scenario, it is projected that from 2024 to 2050, a cumulative
traffic efficiency benefit of 186.6 billion RMB will be generated, including 161.1 billion RMB
in travel time-saving benefits and 25.5 billion RMB in energy-saving benefits. Under the
APIR-APCV scenario, the cumulative traffic efficiency benefit will increase to 628.9 billion
RMB, with travel time saving benefits further magnified to 604.5 billion RMB, while the in-
crease in the average speed of the fleet implies an increase in average energy consumption,
reducing energy-saving benefits to 24.4 billion RMB. The RGIR-APCV scenario will yield
the greatest traffic efficiency benefit of 634.6 billion RMB.
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Figure 14. Traffic efficiency benefits under various intelligence scenarios from 2025 to 2050.

3.1.3. Carbon Emission Reduction Benefit

Distinct vehicle–road intelligence deployment scenarios are associated with different
reductions in congestion-related energy losses attributable to traffic safety enhancements,
as well as variations in per-vehicle energy consumption due to improvements in traffic
efficiency. By taking into account the projected changes in the ownership and penetration
rates of vehicles with diverse powertrains within the future fleet [44], we can determine the
alterations in fuel and electric energy consumption for the fleet under various intelligence
deployment scenarios. Factoring in the carbon emission coefficients for fuel from Table 5,
the future carbon emission factors associated with electricity, and anticipated carbon market
prices, Figure 15 illustrates the reductions in carbon dioxide emissions and the economic
benefits of these reductions across different intelligence deployment scenarios.

As the penetration of NEVs in the fleet increases and ICEVs are phased out year by
year, and given that the carbon emissions of NEVs in use are significantly lower than those
of ICEVs, the electrification of the fleet also implies that the baseline for emission reductions
corresponding to safety and traffic efficiency achieved by intelligence is reduced. It can be
observed that the carbon emission reductions under different intelligence scenarios will
peak around 2030 and then decrease year by year. However, as the difficulty of future
emission reductions increases annually, the carbon market price also rises accordingly. The
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increase in societal carbon reduction costs exceeds the reduction in fleet emissions brought
about by electrification and intelligentization deployment, resulting in an upward trend in
the carbon reduction economic benefits for the five scenarios from 2024 to 2050. Overall, the
differences in carbon reduction economic benefits among the five scenarios—NIR-NCV,
APIR-LCV, APIR-APCV, RGIR-LCV, and RGIR-APCV—are relatively small, with cumula-
tive carbon reduction economic benefits from 2024 to 2050 amounting to 2.82 billion RMB,
2.63 billion RMB, 2.66 billion RMB, 2.63 billion RMB, and 2.66 billion RMB, respectively.
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Figure 15. Carbon emission reduction benefits under various intelligence scenarios from 2025 to 2050.

3.2. Social Cost Under Various Intelligence Scenarios
3.2.1. Incremental Cost of Roadside Intelligence Infrastructure

Based on the deployment costs and power consumption costs of roadside intelligence
infrastructure at different periods (Figure 12), combined with the mileage of different
road types and roadside intelligence infrastructure deployment scenarios (Table 1), the
annual incremental costs of intelligence infrastructure for the APIR and RPIR deployment
scenarios from 2024 to 2050 were obtained, as shown in Figure 16. It can be observed that
the annual incremental costs fluctuate periodically in line with the lifespan of intelligence
configurations, which is 7 years. Under both scenarios, since the scale of road mileage
eventually covered by intelligent infrastructure is exactly the same, the annual incremental
costs will gradually converge as intelligent devices are replaced later on. However, different
deployment schedules in the early stages will lead to significant differences in deployment
costs. The RGIR scenario implies that the Beijing municipal government needs to concen-
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trate nearly 4.5 billion RMB in the two years from 2024 to 2025, focusing on deploying
roadside intelligence infrastructure. Subsequently, as the costs and power consumption of
intelligence configurations, such as perception, communication, and computing, decline,
the annual costs for roadside intelligence infrastructure also decrease year by year.
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Figure 16. Annual incremental cost of roadside intelligence infrastructure. (a) APIR, (b) RPIR.

The total incremental roadside intelligence infrastructure costs for the APIR and
RPIR scenarios from 2024 to 2050 are shown in Figure 17. Under the APIR scenario, the
cumulative total cost (including deployment and power consumption costs) for road-
side intelligence in Beijing is 20.54 billion RMB, and the deployment costs account for
85.57% of the total cost. Meanwhile, under the RPIR scenario, the cumulative total cost
is 28.64 billion RMB, and the deployment costs account for 84.41% of the total cost. It is
noteworthy that the costs for urban expressways only account for 6.4% and 5.2% of the total
costs for seven types of roads, yet urban expressways represent 32% of the usage intensity
in the entire urban road network. In contrast, urban local roads account for 32.9% and
35.6% of the total costs in the two scenarios, with their usage intensity only representing
1.7% of the urban road network.
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3.2.2. Incremental Cost of Vehicle-Side Networking

Based on the deployment costs and power consumption costs of in-vehicle networking
terminals at different periods, and considering the penetration rates under various scenar-
ios, the annual incremental costs of vehicle networking for the LCV and APCV scenarios
from 2024 to 2050 were obtained, as shown in Figure 18. The differences between the
scenarios are mainly reflected in the varying penetration rates and costs in the early stages.
After 2040, all intelligent vehicles are fully connected, and the annual vehicle networking
costs under both scenarios also tend to be roughly equal. Under the LCV scenario, it is
expected that the cumulative incremental cost of vehicle networking for the fleet from
2024 to 2050 will be 7.453 billion RMB, including 7.109 billion RMB for deployment costs
and 344 million RMB for power consumption costs. Under the APCV scenario, it is expected
that the cumulative incremental cost of vehicle networking for the fleet from 2024 to 2050
will be 8.264 billion RMB, including 7.874 billion RMB for deployment costs and 390 million
RMB for power consumption costs.
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3.3. Social Value Under Various Intelligence Scenarios

Based on the comprehensive social benefits generated by existing vehicle–road collab-
orative intelligence systems in the dimensions of safety, efficiency, and carbon emission
reductions, as well as on research findings on the incremental costs of fleet networking and
roadside intelligence infrastructure, the social value is defined as the ratio of the incremen-
tal comprehensive social benefits produced by the vehicle–road collaborative intelligence
system compared to single-vehicle intelligence, to the incremental social costs. This ratio is
used to measure the cost-effectiveness of deploying roadside intelligence infrastructure and
vehicle networking terminals. As shown in Figure 19, under the NIR-NCV scenario, which
relies solely on vehicle-side intelligence development, Beijing can generate an accumulated
social benefit of 958.3 billion RMB. Under the APIR-APCV scenario, by accumulating an
incremental social cost of 28.8 billion RMB from 2024 to 2050 (with vehicle-side incremental
costs accounting for 28.7% and roadside incremental costs accounting for 71.3%), a cumula-
tive social benefit increment of 598.8 billion RMB is generated compared to the NIR-NCV
scenario. This means that the investment in roadside intelligence infrastructure and in-
vehicle networking terminals can generate a social value of approximately 20.8 times the
cost. Comparing the APIR-APCV and RGIR-APCV scenarios, accelerating the deployment
of intelligence infrastructure introduces more roadside cost investment (an increment of
8.1 billion RMB), but the resulting social benefit increment is limited (11.6 billion RMB),
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reducing the social value to 16.5. Overall, the social value of constructing a vehicle–road
collaborative intelligence system is enormous, but it is still necessary to fully match the
deployment pace of roadside intelligence infrastructure with the installation progress of
in-vehicle networking terminals.
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4. Conclusions and Policy Suggestions
Contribution: This study constructs a social value assessment model for collabo-

rative intelligence systems, which includes three benefit sub-models—safety benefits,
traffic efficiency benefits, and carbon emission reduction benefits—as well as two cost
sub-models—incremental costs of roadside intelligence and incremental costs of vehicle
networking. In terms of benefit sub-models, by organizing different combinations of
vehicle–road intelligence schemes and the intelligent functions they can achieve, the safety
effects (comprehensive collision avoidance effectiveness) and traffic efficiency effects (per-
centage reduction in travel time per mile, percentage reduction in energy consumption
per mile) are analyzed. Furthermore, the carbon emission reduction benefit sub-model
quantifies the indirect energy conservation and carbon emission reduction levels resulting
from improvements in traffic safety and efficiency. Taking Beijing as a case study, the model
integrates urban fleet driving characteristics, the mileage scales and usage intensity of
different road types, and economic data such as the average unit time value and carbon
market prices, as well as cost and power consumption data of vehicle-side and roadside
intelligence configurations. It assesses the social cost of upgrading roadside intelligence
infrastructure and deploying vehicle networking, as well as the social benefits generated
by vehicle–road collaborative intelligence in terms of safety, efficiency, energy-saving, and
carbon emission reductions. Our study compares these benefits and costs with the single-
vehicle intelligence scenario to analyze the incremental social value of deploying roadside
intelligence infrastructure and popularizing in-vehicle networking terminals.
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Research findings: From the perspective of the social benefits of vehicle–road collabo-
rative intelligence systems, the introduction of roadside intelligence infrastructure expands
the perception range of vehicles, reduces vehicle perception blind spots, and the mutual ver-
ification of heterogeneous sensors between the vehicle-side and roadside greatly enhances
the reliability and stability of perception. This effectively reduces the number of traffic acci-
dents of varying severity. If roadside intelligence infrastructure and in-vehicle networking
terminals are deployed as planned (APIR-APCV), a safety benefit of 925.6 billion RMB is ex-
pected to be accumulated from 2024 to 2050, significantly higher than the 768.9 billion RMB
in the single-vehicle intelligence scenario (NIR-NCV). Concurrently, roadside perception
and computing capabilities empower vehicles with beyond-line-of-sight perception and
cooperative optimization decision-making. Functions such as cooperative lane changing,
intelligent merging, and green wave passage optimize intelligent driving behaviors and
enhance overall urban traffic efficiency. Under the APIR-APCV scenario, it is expected
that a traffic efficiency benefit of 628.9 billion RMB will be accumulated from 2024 to 2050,
which includes 604.5 billion RMB in travel time-saving benefits and 24.4 billion RMB
in energy-saving benefits. This is higher than the 186.6 billion RMB cumulative traffic
efficiency benefit in the NIR-NCV scenario, which includes 161.1 billion RMB in travel
time-saving benefits and 25.5 billion RMB in energy-saving benefits. Fewer traffic accidents
and more efficient traffic flow also imply different levels of fleet energy consumption
and carbon emissions. In the APIR-APCV scenario, it is projected that a carbon emission
reduction benefit of 2.66 billion RMB will be accumulated from 2024 to 2050, lower than
the 2.82 billion RMB in the NIR-NCV scenario. This is primarily due to the increase in
average vehicle speed as a result of improved traffic efficiency, leading to higher energy
consumption per mile (especially as the penetration rate of NEVs increases, this energy
consumption characteristic will be more pronounced). From the perspective of the incre-
mental social cost of vehicle–road collaborative intelligence systems, it is estimated that the
cumulative total cost for Beijing to deploy roadside intelligence infrastructure as planned
from 2024 to 2050 (APIR) is 20.54 billion RMB, including 17.58 billion RMB in deployment
costs and 2.96 billion RMB in energy consumption costs. It is expected that the cumulative
incremental cost for Beijing to deploy in-vehicle networking terminals as planned (APCV)
from 2024 to 2050 is 8.26 billion RMB, including 7.87 billion RMB in deployment costs
and 390 million RMB in energy consumption costs. From the perspective of the social
value of vehicle–road collaborative intelligence systems, the cost of deploying roadside
intelligence infrastructure and in-vehicle networking terminals will generate approximately
20.8 times the incremental social comprehensive benefits. The social value of constructing
vehicle–road collaborative intelligence systems is enormous. However, it is still necessary
to fully match the deployment progress of roadside intelligence infrastructure with the
loading progress of fleet networking terminals. If these two do not move in the same
direction, the deployment penetration rate of in-vehicle networking terminals that do not
meet expectations and the overly rapid deployment of intelligence infrastructure will both
lead to varying degrees of waste of public resources, reducing their social value.

Policy suggestions and industry participant recommendations: Currently, the con-
struction of the “Vehicle–road-Cloud Integration System” in China is still in its infancy, and
the “fragmentation” of roadside intelligence infrastructure construction cannot support
the large-scale application of autonomous driving technology and connected functions.
This has resulted in a weak willingness of vehicle manufacturers to equip their products
with in-vehicle networking terminals, with a predominant focus on single-vehicle intel-
ligence technology routes. The government should lead industrial development from
the perspective of enhancing social values such as traffic safety, efficiency, and carbon
emission reductions. It should strengthen the construction of standard systems, accelerate
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the deployment of the C-V2X network environment, and prepare for the standardization
and subsequent large-scale deployment of intelligence infrastructure. Considering the
current low penetration rate of in-vehicle networking terminals, the government could
prioritize intelligence infrastructure deployment and technological iteration in road sce-
narios with high usage intensity, such as urban expressways in Beijing, to avoid wasting
of public resources. With the assistance of large-scale roadside intelligence infrastructure,
vehicle manufacturers, in the development and design of intelligent vehicles, should fully
integrate roadside perception, computing, and other external intelligence capabilities, ac-
tively deploy in-vehicle networking terminals, and provide the market with ICVs that have
lower costs and superior performance, thereby accelerating their large-scale popularization
and application. Technology companies with rich experience in big data and software
algorithms need to develop cooperative perception algorithms and cooperative decision-
making and planning algorithms that are oriented towards the vehicle–road collaborative
technology route, providing technical support for vehicle manufacturers and government
transportation departments.

This study has the following limitations. The penetration rates of intelligent vehicles
in this study are based on the forecasts in the “Intelligent Connected Vehicle Technol-
ogy Roadmap 2.0”. These forecasts implicitly assume that the penetration rates of new
intelligent vehicles of different levels remain constant across different vehicle–road intel-
ligence deployment scenarios. In the actual industrial development and popularization
of intelligent vehicles, the deployment of roadside intelligence infrastructure will enable
users to achieve higher safety, efficiency, and energy-saving benefits from intelligent con-
nected vehicles at a lower cost of vehicle intelligence, significantly enhancing the user
value. This implies that users will have a higher willingness to purchase intelligent ve-
hicles, and ultimately increase the penetration rate. In subsequent research, we plan to
quantify the correlation between user value and the market penetration rate of intelligent
vehicles, taking into full consideration the different penetration rates of intelligent vehicles
corresponding to different intelligence deployment scenarios, thereby enabling a more
accurate and systematic analysis of the social value generated by vehicle–road collaborative
intelligence systems. Besides this, the service life of the roadside intelligence device is set at
7 years, with corresponding deployment costs and energy consumption costs taken into
account in this study. The roadside device is replaced at the end of its lifecycle. Other
potential cost factors, such as corresponding maintenance costs and technology upgrade
costs, are not considered in this study.
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Appendix A
The average travel time per mile on urban expressways under different intelligence

scenarios and various traffic flow rates (Q = 4486 pcu/h, Q = 5607 pcu/h, Q = 6728 pcu/h)
is presented in Table A1, Table A2, and Table A3, respectively.

Table A1. Travel time per mile on urban expressways (Q = 4486 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 63.88 57.84 49.54 57.67

2025 63.88 57.61 47.15 54.82

2026 63.88 55.78 45.91 52.11

2027 63.88 53.94 44.67 49.41

2028 63.88 52.10 44.05 47.48

2029 63.88 50.25 43.42 45.54

2030 63.88 49.83 43.24 44.79

2031 63.88 49.41 43.06 44.04

2032 63.88 48.79 42.79 43.55

2033 63.88 48.17 42.52 43.06

2034 63.88 48.02 42.30 42.78

2035 63.88 47.87 42.07 42.49

2036 63.88 47.49 41.84 42.13

2037 63.88 47.10 41.61 41.76

2038 63.88 47.07 41.49 41.65

2039 63.88 47.04 41.37 41.53

2040 63.88 46.89 41.30 41.38

2041 63.88 46.74 41.22 41.22

2042 63.88 46.50 41.15 41.15

2043 63.88 46.26 41.08 41.08

2044 63.88 46.05 41.02 41.02

2045 63.88 45.84 40.96 40.96

2046 63.88 45.70 40.91 40.91

2047 63.88 45.57 40.87 40.87

2048 63.88 45.54 40.86 40.86

2049 63.88 45.51 40.86 40.86

2050 63.88 45.36 40.86 40.86

Table A2. Travel time per mile on urban expressways (Q = 5607 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 110.07 98.95 93.98 100.78

2025 110.07 100.77 90.23 99.19

2026 110.07 98.72 78.05 96.10

2027 110.07 96.66 65.87 93.02

2028 110.07 95.37 56.89 81.27

2029 110.07 94.07 47.92 69.53
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Table A2. Cont.

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2030 110.07 93.43 46.78 59.51

2031 110.07 92.78 45.64 49.49

2032 110.07 90.66 44.93 47.61

2033 110.07 88.55 44.23 45.74

2034 110.07 82.94 43.72 45.02

2035 110.07 77.34 43.22 44.30

2036 110.07 77.39 43.13 43.71

2037 110.07 77.44 43.03 43.13

2038 110.07 73.26 42.77 42.91

2039 110.07 69.09 42.50 42.70

2040 110.07 67.15 42.37 42.47

2041 110.07 65.22 42.24 42.24

2042 110.07 64.23 42.04 42.04

2043 110.07 63.24 41.84 41.84

2044 110.07 59.81 41.60 41.60

2045 110.07 56.38 41.37 41.37

2046 110.07 58.19 41.19 41.19

2047 110.07 60.01 41.01 41.01

2048 110.07 57.34 41.01 41.01

2049 110.07 54.66 41.01 41.01

2050 110.07 56.15 41.01 41.01

Table A3. Travel time per mile on urban expressways (Q = 6728 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 106.75 103.93 101.45 105.29

2025 106.75 107.95 99.54 105.16

2026 106.75 107.12 96.99 103.83

2027 106.75 106.29 94.45 102.49

2028 106.75 106.33 85.67 99.59

2029 106.75 106.37 76.89 96.70

2030 106.75 106.37 64.65 88.40

2031 106.75 106.37 52.42 80.11

2032 106.75 107.50 50.35 66.17

2033 106.75 108.63 48.27 52.23

2034 106.75 107.07 47.25 49.70

2035 106.75 105.50 46.22 47.18

2036 106.75 107.17 45.86 46.56

2037 106.75 108.84 45.51 45.95

2038 106.75 108.90 45.45 45.96

2039 106.75 108.96 45.38 45.97
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Table A3. Cont.

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2040 106.75 110.43 44.62 44.91

2041 106.75 111.89 43.85 43.85

2042 106.75 113.71 43.91 43.91

2043 106.75 115.53 43.97 43.97

2044 106.75 119.22 43.16 43.16

2045 106.75 122.90 42.36 42.36

2046 106.75 126.58 42.38 42.38

2047 106.75 130.25 42.40 42.40

2048 106.75 133.72 42.14 42.14

2049 106.75 137.18 41.88 41.88

2050 106.75 127.87 41.88 41.88

The average power consumption per mile on urban expressways under different
intelligence scenarios and various traffic flow rates (Q = 4486 pcu/h, Q = 5607 pcu/h,
Q = 6728 pcu/h) is presented in Table A4, Table A5, and Table A6, respectively.

Table A4. Power consumption per mile on urban expressways (Q = 4486 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 0.1380 0.1390 0.1402 0.1391

2025 0.1380 0.1352 0.1400 0.1383

2026 0.1380 0.1352 0.1392 0.1386

2027 0.1380 0.1352 0.1384 0.1390

2028 0.1380 0.1364 0.1377 0.1392

2029 0.1380 0.1376 0.1370 0.1395

2030 0.1380 0.1383 0.1373 0.1389

2031 0.1380 0.1389 0.1376 0.1382

2032 0.1380 0.1388 0.1376 0.1384

2033 0.1380 0.1387 0.1376 0.1385

2034 0.1380 0.1387 0.1376 0.1385

2035 0.1380 0.1386 0.1376 0.1385

2036 0.1380 0.1386 0.1379 0.1385

2037 0.1380 0.1385 0.1381 0.1385

2038 0.1380 0.1386 0.1382 0.1384

2039 0.1380 0.1387 0.1383 0.1384

2040 0.1380 0.1386 0.1385 0.1385

2041 0.1380 0.1385 0.1387 0.1387

2042 0.1380 0.1390 0.1386 0.1386

2043 0.1380 0.1395 0.1386 0.1386

2044 0.1380 0.1398 0.1385 0.1385

2045 0.1380 0.1400 0.1384 0.1384

2046 0.1380 0.1402 0.1384 0.1384
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Table A4. Cont.

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2047 0.1380 0.1405 0.1384 0.1384

2048 0.1380 0.1405 0.1384 0.1384

2049 0.1380 0.1405 0.1384 0.1384

2050 0.1380 0.1403 0.1384 0.1384

Table A5. Power consumption per mile on urban expressways (Q = 5607 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 0.1493 0.1632 0.1621 0.1628

2025 0.1493 0.1577 0.1582 0.1587

2026 0.1493 0.1541 0.1486 0.1507

2027 0.1493 0.1505 0.1391 0.1428

2028 0.1493 0.1431 0.1403 0.1355

2029 0.1493 0.1357 0.1415 0.1281

2030 0.1493 0.1298 0.1409 0.1345

2031 0.1493 0.1240 0.1403 0.1408

2032 0.1493 0.1231 0.1402 0.1411

2033 0.1493 0.1222 0.1401 0.1413

2034 0.1493 0.1227 0.1397 0.1410

2035 0.1493 0.1232 0.1393 0.1408

2036 0.1493 0.1240 0.1397 0.1406

2037 0.1493 0.1249 0.1401 0.1405

2038 0.1493 0.1273 0.1399 0.1401

2039 0.1493 0.1297 0.1397 0.1398

2040 0.1493 0.1307 0.1398 0.1399

2041 0.1493 0.1318 0.1400 0.1400

2042 0.1493 0.1327 0.1397 0.1397

2043 0.1493 0.1337 0.1394 0.1394

2044 0.1493 0.1356 0.1394 0.1394

2045 0.1493 0.1375 0.1393 0.1393

2046 0.1493 0.1378 0.1392 0.1392

2047 0.1493 0.1382 0.1390 0.1390

2048 0.1493 0.1384 0.1390 0.1390

2049 0.1493 0.1386 0.1390 0.1390

2050 0.1493 0.1394 0.1390 0.1390

Table A6. Power consumption per mile on urban expressways (Q = 6728 pcu/h).

HV—Human Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 0.1740 0.1733 0.1734 0.1714

2025 0.1740 0.1652 0.1730 0.1674

2026 0.1740 0.1620 0.1685 0.1635
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Table A6. Cont.

HV—Human Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2027 0.1740 0.1588 0.1639 0.1597

2028 0.1740 0.1557 0.1536 0.1531

2029 0.1740 0.1527 0.1433 0.1465

2030 0.1740 0.1516 0.1431 0.1393

2031 0.1740 0.1506 0.1428 0.1322

2032 0.1740 0.1485 0.1428 0.1378

2033 0.1740 0.1464 0.1427 0.1433

2034 0.1740 0.1444 0.1427 0.1432

2035 0.1740 0.1425 0.1427 0.1431

2036 0.1740 0.1403 0.1428 0.1431

2037 0.1740 0.1382 0.1428 0.1432

2038 0.1740 0.1386 0.1423 0.1428

2039 0.1740 0.1389 0.1418 0.1425

2040 0.1740 0.1377 0.1417 0.1420

2041 0.1740 0.1364 0.1415 0.1415

2042 0.1740 0.1361 0.1410 0.1410

2043 0.1740 0.1358 0.1404 0.1404

2044 0.1740 0.1323 0.1403 0.1403

2045 0.1740 0.1288 0.1402 0.1402

2046 0.1740 0.1273 0.1402 0.1402

2047 0.1740 0.1257 0.1401 0.1401

2048 0.1740 0.1214 0.1401 0.1401

2049 0.1740 0.1171 0.1400 0.1400

2050 0.1740 0.1267 0.1400 0.1400

The average travel time per mile on urban main roads under different intelligence
scenarios and various traffic flow rates (Q = 1650 pcu/h, Q = 2100 pcu/h) is presented in
Tables A7 and A8, respectively.

Table A7. Travel time per mile on urban main roads (Q = 1650 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 90.66 90.50 89.99 90.62

2025 90.66 90.70 89.79 90.46

2026 90.66 90.48 89.54 90.14

2027 90.66 90.25 89.29 89.83

2028 90.66 90.02 88.96 89.42

2029 90.66 89.80 88.64 89.01

2030 90.66 89.71 88.20 88.66

2031 90.66 89.63 87.77 88.30

2032 90.66 89.57 87.34 88.04

2033 90.66 89.52 86.91 87.77
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Table A7. Cont.

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2034 90.66 89.52 86.79 87.22

2035 90.66 89.52 86.67 86.68

2036 90.66 89.32 86.24 86.38

2037 90.66 89.12 85.81 86.08

2038 90.66 89.21 85.82 85.99

2039 90.66 89.30 85.83 85.91

2040 90.66 89.11 85.75 85.79

2041 90.66 88.92 85.66 85.66

2042 90.66 88.77 85.66 85.66

2043 90.66 88.62 85.66 85.66

2044 90.66 88.90 85.45 85.45

2045 90.66 89.19 85.25 85.25

2046 90.66 89.10 85.13 85.13

2047 90.66 89.00 85.00 85.00

2048 90.66 89.03 85.03 85.03

2049 90.66 89.05 85.06 85.06

2050 90.66 88.76 85.06 85.06

Table A8. Travel time per mile on urban main roads (Q = 2100 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 97.55 96.88 95.90 96.65

2025 97.55 96.66 95.32 97.06

2026 97.55 96.40 94.71 96.37

2027 97.55 96.14 94.10 95.67

2028 97.55 96.01 93.76 94.97

2029 97.55 95.88 93.43 94.27

2030 97.55 95.53 92.77 93.63

2031 97.55 95.19 92.11 92.98

2032 97.55 95.09 91.67 92.64

2033 97.55 94.99 91.22 92.30

2034 97.55 94.82 90.68 91.71

2035 97.55 94.65 90.14 91.11

2036 97.55 94.61 90.07 90.72

2037 97.55 94.57 90.01 90.34

2038 97.55 94.42 89.65 90.01

2039 97.55 94.26 89.29 89.69

2040 97.55 94.18 89.53 89.73

2041 97.55 94.11 89.77 89.77

2042 97.55 93.81 89.52 89.52

2043 97.55 93.51 89.27 89.27
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Table A8. Cont.

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2044 97.55 93.66 89.44 89.44

2045 97.55 93.82 89.61 89.61

2046 97.55 93.68 89.42 89.42

2047 97.55 93.53 89.23 89.23

2048 97.55 93.47 89.27 89.27

2049 97.55 93.40 89.31 89.31

2050 97.55 93.46 89.31 89.31

The average power consumption per mile on urban main roads under different in-
telligence scenarios and various traffic flow rates (Q = 1650 pcu/h, Q = 2100 pcu/h) is
presented in Tables A9 and A10, respectively.

Table A9. Power consumption per mile on urban main roads (Q = 1650 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 0.2091 0.2100 0.2079 0.2101

2025 0.2091 0.2098 0.2081 0.2104

2026 0.2091 0.2098 0.2076 0.2104

2027 0.2091 0.2098 0.2071 0.2104

2028 0.2091 0.2102 0.2067 0.2094

2029 0.2091 0.2105 0.2063 0.2084

2030 0.2091 0.2103 0.2059 0.2078

2031 0.2091 0.2100 0.2055 0.2072

2032 0.2091 0.2103 0.2058 0.2072

2033 0.2091 0.2106 0.2062 0.2073

2034 0.2091 0.2107 0.2069 0.2076

2035 0.2091 0.2108 0.2076 0.2079

2036 0.2091 0.2111 0.2071 0.2076

2037 0.2091 0.2114 0.2065 0.2072

2038 0.2091 0.2115 0.2069 0.2070

2039 0.2091 0.2116 0.2073 0.2069

2040 0.2091 0.2118 0.2075 0.2073

2041 0.2091 0.2120 0.2077 0.2077

2042 0.2091 0.2116 0.2072 0.2072

2043 0.2091 0.2111 0.2068 0.2068

2044 0.2091 0.2119 0.2068 0.2068

2045 0.2091 0.2127 0.2068 0.2068

2046 0.2091 0.2125 0.2068 0.2068

2047 0.2091 0.2124 0.2068 0.2068

2048 0.2091 0.2129 0.2070 0.2070

2049 0.2091 0.2134 0.2071 0.2071

2050 0.2091 0.2113 0.2071 0.2071
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Table A10. Power consumption per mile on urban main roads (Q = 2100 pcu/h).

HV—Human-Driven Single-Vehicle
Intelligence

APCV—Collaborative
Perception and Decision

LCV—Collaborative
Perception and Decision

2024 0.2139 0.2139 0.2125 0.2141

2025 0.2139 0.2138 0.2117 0.2133

2026 0.2139 0.2141 0.2106 0.2136

2027 0.2139 0.2144 0.2094 0.2138

2028 0.2139 0.2143 0.2094 0.2127

2029 0.2139 0.2142 0.2094 0.2116

2030 0.2139 0.2136 0.2091 0.2110

2031 0.2139 0.2129 0.2088 0.2103

2032 0.2139 0.2134 0.2088 0.2103

2033 0.2139 0.2139 0.2089 0.2103

2034 0.2139 0.2130 0.2091 0.2106

2035 0.2139 0.2122 0.2092 0.2109

2036 0.2139 0.2131 0.2087 0.2102

2037 0.2139 0.2140 0.2082 0.2096

2038 0.2139 0.2143 0.2085 0.2096

2039 0.2139 0.2147 0.2088 0.2095

2040 0.2139 0.2150 0.2095 0.2099

2041 0.2139 0.2154 0.2102 0.2102

2042 0.2139 0.2147 0.2098 0.2098

2043 0.2139 0.2141 0.2094 0.2094

2044 0.2139 0.2146 0.2094 0.2094

2045 0.2139 0.2151 0.2095 0.2095

2046 0.2139 0.2150 0.2100 0.2100

2047 0.2139 0.2149 0.2105 0.2105

2048 0.2139 0.2146 0.2101 0.2101

2049 0.2139 0.2143 0.2097 0.2097

2050 0.2139 0.2147 0.2097 0.2097

References
1. The Central People’s Government of the People’s Republic of China. China’s Automobile Production and Sales Volume Exceeded

30 Million Units for the First Time in 2023. Available online: https://www.gov.cn/yaowen/liebiao/202401/content_6925448.htm
(accessed on 11 January 2024).

2. Ministry of Public Security of the People’s Republic of China. The Total Number of Motor Vehicles in China Reached 435 Million
in 2023. Available online: https://www.mps.gov.cn/n2254098/n4904352/c9384864/content.html (accessed on 11 January 2024).

3. National Bureau of Statistics of China. China Statistical Yearbook 2023; National Bureau of Statistics of China: Beijing, China, 2023.
4. Baidu Map. China Urban Transportation Report 2023; Baidu Map: Beijing, China, 2023.
5. China EV100. Research on the Goal, Path and Policy of Achieving Carbon Peak and Carbon Neutrality in Collaboration with Automobiles,

Transportation and Energy; China EV100: Beijing, China, 2022.
6. China Industry Innovation Alliance for the Intelligent and Connected Vehicles. Technology Roadmap for Intelligent & Connected

Vehicles 2.0; China Industry Innovation Alliance for the Intelligent and Connected Vehicles: Beijing, China, 2021.
7. Tan, H.; Zhao, F.; Zhang, W.; Liu, Z. An Evaluation of the Safety Effectiveness and Cost of Autonomous Vehicles Based on

Multivariable Coupling. Sensors 2023, 23, 1321. [CrossRef] [PubMed]
8. Li, Y.; Li, Z.; Wang, H.; Wang, W.; Xing, L. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.

Accid. Anal. Prev. 2017, 104, 137–145. [CrossRef] [PubMed]

https://www.gov.cn/yaowen/liebiao/202401/content_6925448.htm
https://www.mps.gov.cn/n2254098/n4904352/c9384864/content.html
https://doi.org/10.3390/s23031321
https://www.ncbi.nlm.nih.gov/pubmed/36772361
https://doi.org/10.1016/j.aap.2017.04.025
https://www.ncbi.nlm.nih.gov/pubmed/28500990


Sustainability 2025, 17, 1565 38 of 39

9. Olia, A.; Razavi, S.; Abdulhai, B.; Abdelgawad, H. Traffic capacity implications of automated vehicles mixed with regular vehicles.
J. Intell. Transp. Syst. 2018, 22, 244–262. [CrossRef]

10. Stogios, C.; Kasraian, D.; Roorda, M.J.; Hatzopoulou, M. Simulating impacts of automated driving behavior and traffic conditions
on vehicle emissions. Transp. Res. Part D Transp. Environ. 2019, 76, 176–192. [CrossRef]

11. Song, H.; Zhao, F.; Zhu, G.; Liu, Z. Impacts of connected and autonomous vehicles with level 2 automation on traffic efficiency
and energy consumption. J. Adv. Transp. 2023, 2023, 6348778. [CrossRef]

12. Milakis, D.; Van Arem, B.; Van Wee, B. Policy and society related implications of automated driving: A review of literature and
directions for future research. J. Intell. Transp. Syst. 2017, 21, 324–348. [CrossRef]

13. Qiu, L.; Qian, L.; Abdollahi, Z.; Kong, Z.; Pisu, P. Engine-map-based predictive fuel-efficient control strategies for a group of
connected vehicles. Automot. Innov. 2018, 1, 311–319. [CrossRef]

14. Li, K.; Dai, Y.; Li, S.; Bian, M. State-of-the-art and technical trends of intelligent and connected vehicles. J. Automot. Saf. Energy
2017, 8, 1–14.

15. Institute for AI Industry Research of Tsinghua University. Key Technologies and Developing Prospect of Vehicle Infrastructure Cooperated
Driving (VICAD)2.0; Institute for AI Industry Research of Tsinghua University: Beijing, China, 2022.

16. Schaudt, W.A.; Bowman, D.S.; Hanowski, R.J.; Olson, R.L.; Marinik, A.; Soccolich, S.; Joslin, S.; Toole, L.; Rice, J.C. Federal Motor
Carrier Safety Administration’s Advanced System Testing Utilizing a Data Acquisition System on the Highways (FAST DASH): Safety
Technology Evaluation Project #1 Blindspot Warning, Field Studies; Federal Motor Carrier Safety Administration: Washington, DC,
USA, 2014.

17. Haus, S.H.; Sherony, R.; Gabler, H.C. Estimated benefit of automated emergency braking systems for vehicle–pedestrian crashes
in the United States. Traffic Inj. Prev. 2019, 20 (Suppl. 1), S171–S176. [CrossRef] [PubMed]

18. Anderson, R.; Hutchinson, T.; Linke, B.; Ponte, G. Analysis of Crash Data to Estimate the Benefits of Emerging Vehicle Technology;
Centre for Automotive safety Research, The University of Adelaide: Adelaide, Australia, 2010.

19. Guériau, M.; Billot, R.; El Faouzi, N.-E.; Monteil, J.; Armetta, F.; Hassas, S. How to assess the benefits of connected vehicles?
A simulation framework for the design of cooperative traffic management strategies. Transp. Res. Part C Emerg. Technol. 2016,
67, 266–279. [CrossRef]

20. Rommerskirchen, C.; Helmbrecht, M.; Bengler, K. Increasing complexity of driving situations and its impact on an ADAS for
anticipatory assistance for the reduction of fuel consumption. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium
(IV), Gold Coast, Australia, 23–26 June 2013; IEEE: New York, NY, USA, 2013; pp. 573–578.

21. Vahidi, A.; Sciarretta, A. Energy saving potentials of connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 2018,
95, 822–843. [CrossRef]

22. Juan, Z.; Wu, J.; Mike, M. Socio-economic impact assessment of intelligent transport systems. Tsinghua Sci. Technol. 2006,
11, 339–350. [CrossRef]

23. Farooq, U.; Hardy, J.L.; Gao, L.; Siddiqui, M.A. Economic Impact/Forecast Model of Intelligent Transportation Systems in
Michigan: An Input Output Analysis. J. Intell. Transp. Syst. 2008, 12, 86–95. [CrossRef]

24. Grant-Muller, S.; Usher, M. Intelligent Transport Systems: The propensity for environmental and economic benefits. Technol.
Forecast. Soc. Change 2014, 82, 149–166. [CrossRef]

25. He, J.; Zeng, Z.; Li, Z. Benefit Evaluation Framework of Intelligent Transportation Systems. J. Transp. Syst. Eng. Inf. Technol. 2010,
10, 81–87. [CrossRef]

26. Kuang, X. Research on the Benefits and Business Models of Intelligent Connected Vehicles; Tsinghua University: Beijing, China, 2019.
27. The People’s Government of Beijing Municipality. Beijing Statistical Bulletin of National Economic and Social Development in

2023. The People’s Government of Beijing Municipality. Available online: https://www.beijing.gov.cn/zhengce/zhengcefagui/
202403/t20240321_3596451.html (accessed on 21 March 2024).

28. Zhu, G.; Zhao, F.; Song, H.; Zhang, W.; Liu, Z. Research on Vehicle-Road Intelligent Capacity Redistribution and Cost Sharing in
the Context of Collaborative Intelligence. Appl. Sci. 2024, 14, 7286. [CrossRef]

29. China EV100. Smart City Infrastructure and Intelligent Connected Vehicle Collaborative Development Annual Research Report; China
EV100: Beijing, China, 2022.

30. China Industry Innovation Alliance for the intelligent and Connected Vehicles. C-V2X Industrialization Path and Schedule Research
White Book; China Industry Innovation Alliance for the intelligent and Connected Vehicles: Beijing, China, 2019.

31. Ministry of Industry and Information Technology of the People’s Republic of China. Intelligent Connected Vehicle Technology
Roadmap 2.0; Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2020.

32. Tan, H. Research on the Safety Benefits and Cost of Autonomous Vehicles Based on Miltivariable Coupling; Tsinghua University:
Beijing, China, 2023.

33. Zhu, G.; Zhao, F.; Song, H.; Liu, Z. Cost Analysis of Vehicle-Road Cooperative Intelligence Solutions for High-Level Autonomous
Driving: A Beijing Case Study. J. Adv. Transp. 2024, 2024, 6170743. [CrossRef]

https://doi.org/10.1080/15472450.2017.1404680
https://doi.org/10.1016/j.trd.2019.09.020
https://doi.org/10.1155/2023/6348778
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1007/s42154-018-0042-8
https://doi.org/10.1080/15389588.2019.1602729
https://www.ncbi.nlm.nih.gov/pubmed/31381447
https://doi.org/10.1016/j.trc.2016.01.020
https://doi.org/10.1016/j.trc.2018.09.001
https://doi.org/10.1016/S1007-0214(06)70198-5
https://doi.org/10.1080/15472450802023352
https://doi.org/10.1016/j.techfore.2013.06.010
https://doi.org/10.1016/S1570-6672(09)60025-8
https://www.beijing.gov.cn/zhengce/zhengcefagui/202403/t20240321_3596451.html
https://www.beijing.gov.cn/zhengce/zhengcefagui/202403/t20240321_3596451.html
https://doi.org/10.3390/app14167286
https://doi.org/10.1155/2024/6170743


Sustainability 2025, 17, 1565 39 of 39

34. Ministry of Public Security of the People’s Republic of China. The Road Accident Statistical Annual Report of China (2019); Ministry
of Public Security of the People’s Republic of China: Beijing, China, 2020.

35. McMahon, K.; Dahdah, S. The True Cost of Road Crashes: Valuing Life and the Cost of A Serious Injury; iRAP: London, UK, 2008.
36. U.S. Department of Transportation. Treatment of the Value of Preventing Fatalities and Injuries in Preparing Economic Analyses;

U.S. Department of Transportation: Washington, DC, USA, 2015.
37. China Population and Development Research Center. China Health Yearbook in 2022; China Population and Development Research

Center: Beijing, China, 2023.
38. Song, H.; Zhao, F.; Zhu, G.; Zhang, H.; Liu, Z.; Li, M.E. Evaluation of Traffic Efficiency and Energy-Saving Benefits of L3 Smart

Vehicles under the Urban Expressway Scenario. Sustainability 2024, 16, 4125. [CrossRef]
39. GB/T 51328-2018; Urban Comprehensive Transportation System Planning Standard. The Standardization Administration of the

People’s Republic of China: Beijing, China, 2018.
40. Yu, L.; Song, G. Urban Traffic Flow Theory; Beijing Jiaotong University Press: Beijing, China, 2016.
41. Dai, S.; Liu, J.; Zhao, L. Research Report on Metropolis’s Road Traffic Development in China; China Communication Press:

Beijing, China, 2020.
42. Liu, X. Research on Evaluation Methods and Eelection Strategies of Vehicle Multi-Power Source Coupling Technology Solutions; Tsinghua

University: Beijing, China, 2024.
43. Global Petrol Prices. Gasoline Price in China. Available online: https://www.globalpetrolprices.com/gasoline_prices/ (accessed

on 25 November 2024).
44. Zhang, H. Life Cycle Carbon Emission Analysis of Intelligence Electric Passenger Vehicles in China; Tsinghua University:

Beijing, China, 2024.
45. Zhang, X.; Huang, X.; Zhang, D. Research on the Pathway and Policies for China’s Energy and Economy Transformation toward

Carbon Neutrality. Manag. World 2022, 38, 35–66.
46. Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva,

Switzerland, 2006.
47. Burnham, A. Updated Vehicle Specifications in the GREET Vehicle-Cycle Model; Argonne National Laboratory: Lemont, IL, USA, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/su16104125
https://www.globalpetrolprices.com/gasoline_prices/

	Introduction 
	Social Value Evaluation Model 
	Model Framework 
	Typical Intelligence Scheme and Scenario Setting 
	Typical Vehicle-Side and Roadside Intelligence Scheme 
	Forecast of Vehicle Ownership in Beijing 
	Vehicle Networking Scenarios and Roadside Intelligence Deployment Scenarios 

	Social Values Evaluation Model 
	Quantified Assessment Sub-Model of Safety Benefit 
	Quantified Assessment Sub-Model of Traffic Efficiency Benefit 
	Quantified Assessment Sub-Model of Carbon Emission Reduction Benefit 

	Social Incremental Cost Evaluation Model 

	Results and Discussion 
	Social Benefit Under Various Intelligence Scenarios 
	Traffic Safety Benefit 
	Traffic Efficiency Benefit 
	Carbon Emission Reduction Benefit 

	Social Cost Under Various Intelligence Scenarios 
	Incremental Cost of Roadside Intelligence Infrastructure 
	Incremental Cost of Vehicle-Side Networking 

	Social Value Under Various Intelligence Scenarios 

	Conclusions and Policy Suggestions 
	Appendix A
	References

